We tested the hypothesis that reduced root secondary growth of dicotyledonous species improves phosphorus acquisition. Functional-structural modeling in SimRoot indicates that, in common bean (), reduced root secondary growth reduces root metabolic costs, increases root length, improves phosphorus capture, and increases shoot biomass in low-phosphorus soil. Observations from the field and greenhouse confirm that, under phosphorus stress, resource allocation is shifted from secondary to primary root growth, genetic variation exists for this response, and reduced secondary growth improves phosphorus capture from low-phosphorus soil. Under low phosphorus in greenhouse mesocosms, genotypes with reduced secondary growth had 39% smaller root cross-sectional area, 60% less root respiration, 27% greater root length, 78% greater shoot phosphorus content, and 68% greater shoot mass than genotypes with advanced secondary growth. In the field under low phosphorus, these genotypes had 43% smaller root cross-sectional area, 32% greater root length, 58% greater shoot phosphorus content, and 80% greater shoot mass than genotypes with advanced secondary growth. Secondary growth eliminated arbuscular mycorrhizal associations as cortical tissue was destroyed. These results support the hypothesis that reduced root secondary growth is an adaptive response to low phosphorus availability and merits investigation as a potential breeding target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5761805 | PMC |
http://dx.doi.org/10.1104/pp.17.01583 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Fudan University - Handan Campus: Fudan University, Department of Chemistry, 2205 Songhu Road, Laboratory of Advanced Materials, 200438, Shanghai, CHINA.
The synthesis of metal-organic frameworks (MOFs) with diverse geometries has captivated considerable interest due to their manifestation of novel and extraordinary properties. While much progress has been made in shaping regular polyhedral single-crystal MOFs, the creation of more complex, topologically intricate nanostructures remains a largely unexplored frontier. Here, we present a refined site-specific anisotropic assembly and etching co-mediation approach to fabricate a series of hierarchical MOF nanohybrids and single-crystal MOFs.
View Article and Find Full Text PDFJ Pharm Anal
December 2024
Department of Radiation Oncology, Anhui No. 2 Provincial People's Hospital, Hefei, 230031, China.
Radiotherapy (RT) is one of the most common treatments for cancer. However, intracellular glutathione (GSH) plays a key role in protecting cancer from radiation damage. Herein, we have developed a platelet membrane biomimetic nanomedicine (PMD) that induces double GSH consumption to enhance tumor radioimmunotherapy.
View Article and Find Full Text PDFFront Plant Sci
January 2025
School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.
is a well-known plant used in oriental medicine plant, and is also serves as the primary traditional source of plant red dyestuffs. With the current depletion of natural resources of , it is critical to conduct cultivation studies on the . Here, we report on the dynamic growth characteristics and secondary metabolite accumulation of cultivated , as well as the discovery of important genes involved in anthraquinone biosynthesis.
View Article and Find Full Text PDFPhytoKeys
January 2025
Science & Conservation Division, Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO 63110, USA Missouri Botanical Garden St. Louis United States of America.
Members of the genus L. (Heliconiaceae) have evolved complex interactions with both insect herbivores and hummingbird pollinators in tropical forests and secondary growth where they are abundant and diverse. Many of these same species have also been cultivated as ornamentals around the world for hundreds of years because of their extraordinary colors and forms.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China.
Background: Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) can induce accelerated regeneration of future liver remnant (FLR) and effectively reduce the occurrence of liver failure due to insufficient FLR after hepatectomy, thereby increasing the probability of radical resection for previously inoperable patients with liver cancer. However, the exact mechanism by which ALPPS accelerates liver regeneration remains elusive.
Methods: A review of the literature was performed utilizing MEDLINE/PubMed and Web of Science databases in March of 2024.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!