The aerodynamic performance of vehicles and animals, as well as the productivity of turbines and energy harvesters, depends on the turbulence intensity of the incoming flow. Previous studies have pointed at the potential benefits of active closed-loop turbulence control. However, it is unclear what the minimal sensory and algorithmic requirements are for realizing this control. Here we show that very low-bandwidth anemometers record sufficient information for an adaptive control algorithm to converge quickly. Our online Newton-Raphson algorithm tunes the turbulence in a recirculating wind tunnel by taking readings from an anemometer in the test section. After starting at 9% turbulence intensity, the algorithm converges on values ranging from 10% to 45% in less than 12 iterations within 1% accuracy. By down-sampling our measurements, we show that very-low-bandwidth anemometers record sufficient information for convergence. Furthermore, down-sampling accelerates convergence by smoothing gradients in turbulence intensity. Our results explain why low-bandwidth anemometers in engineering and mechanoreceptors in biology may be sufficient for adaptive control of turbulence intensity. Finally, our analysis suggests that, if certain turbulent eddy sizes are more important to control than others, frugal adaptive control schemes can be particularly computationally effective for improving performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5721165 | PMC |
http://dx.doi.org/10.1098/rsif.2017.0621 | DOI Listing |
Physiol Plant
January 2025
Department of Biology, University of Konstanz, Konstanz, Germany.
Diatoms dominate phytoplankton communities in turbulent waters, where light fluctuations can be frequent and intense. Due to this complex environment, these heterokont microalgae display remarkable photoprotection strategies, including a fast Non-Photochemical Quenching (NPQ). However, in nature, several abiotic parameters (such as temperature) can influence the response of photosynthetic organisms to light stress in a synergistic or antagonistic manner.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Production Engineering and Materials Technology, Częstochowa University of Technology, al. Armii Krajowej 19, 42-201 Częstochowa, Poland.
The paper presents the results of industrial research and numerical simulations of the chemical homogenization of liquid steel. The research object was a ladle furnace with a working capacity of the ladle of 100 t at the steel plant of Huta Częstochowa, currently Liberty Częstochowa Sp. z o.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
This study focuses on the simulation of a solar photocatalytic reactor with linear parabolic reflectors and continuous fluid flow. The simulation approach was initially validated against experimental data reported by Miranda-Garcia et al. Catal Today 151:107-113 (2010), yielding a high degree of accuracy of approximately 0.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Gas and Fire Control for Mines, Ministry of Education, Xuzhou, 221116, China.
Confined space fires could easily cause serious casualties and property damage, and foam is an effective means of preventing confined space fires. The existing foam generator does not have both momentum and foam expansion rate (FER) and is poorly suited to confined spaces. In order to develop a foam generator suitable for confined space fire protection, an in-depth analysis of the physical foaming characteristics of self-suction foam is required, and the structure of the foam generator is optimized accordingly.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
The energy cascade, i.e. the transfer of kinetic energy from large-scale to small-scale flow motions, has been the cornerstone of turbulence theories and models since the 1940s.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!