Drosophila Embryonic Hemocytes Produce Laminins to Strengthen Migratory Response.

Cell Rep

CABD (CSIC-Universidad Pablo de Olavide-JA), Sevilla 41013, Spain. Electronic address:

Published: November 2017

The most prominent developmental function attributed to the extracellular matrix (ECM) is cell migration. While cells in culture can produce ECM to migrate, the role of ECM in regulating developmental cell migration is classically viewed as an exogenous matrix presented to the moving cells. In contrast to this view, we show here that Drosophila embryonic hemocytes deposit their own laminins in streak-like structures to migrate efficiently throughout the embryo. With the help of transplantation experiments, live microscopy, and image quantification, we demonstrate that autocrine-produced laminin regulates hemocyte migration by controlling lamellipodia dynamics, stability, and persistence. Proper laminin deposition is regulated by the RabGTPase Rab8, which is highly expressed and required in hemocytes for lamellipodia dynamics and migration. Our results thus support a model in which, during embryogenesis, the Rab8-regulated autocrine deposition of laminin reinforces directional and effective migration by stabilizing cellular protrusions and strengthening otherwise transient adhesion states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5695906PMC
http://dx.doi.org/10.1016/j.celrep.2017.10.047DOI Listing

Publication Analysis

Top Keywords

drosophila embryonic
8
embryonic hemocytes
8
cell migration
8
lamellipodia dynamics
8
migration
5
hemocytes produce
4
produce laminins
4
laminins strengthen
4
strengthen migratory
4
migratory response
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!