MicroRNAs (miRNAs) are small endogenous noncoding single-stranded RNAs regulating gene expression in eukaryotes. They play important roles in regulating caste differentiation, behavior development, and immune defences in the honey bee, Apis mellifera (Linnaeus) (Hymenoptera: Apidae). In this study, we explored the effect of the neonicotinoid insecticide, thiamethoxam, on miRNA expression in this species using deep small RNA sequencing. The results showed that seven miRNAs were significantly differentially expressed (q-value <0.01 and |log2(fold-change)| >1) upon exposure to 10 ppb thiamethoxam over 10 d. Some candidate target genes were related to behavior, immunity, and neural function. Several miRNAs, including ame-miR-124, ame-miR-981, ame-miR-3791, and ame-miR-6038, were selected and further validated using real-time quantitative PCR analysis. The findings expand our understanding of the effects of neonicotinoid insecticides on honey bees at the molecular level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206646PMC
http://dx.doi.org/10.1093/jisesa/iex074DOI Listing

Publication Analysis

Top Keywords

neonicotinoid insecticide
8
insecticide thiamethoxam
8
thiamethoxam mirna
8
mirna expression
8
honey bee
8
hymenoptera apidae
8
influence neonicotinoid
4
expression honey
4
bee hymenoptera
4
apidae micrornas
4

Similar Publications

Successful Management of Acetamiprid Intoxication in a Captive Eurasian Goshawk ().

J Avian Med Surg

January 2025

Ennetseeklinik für Kleintiere, Exotic Pet Department, 6331 Hünenberg, Zug, Switzerland.

A captive, 1-year-old, male Eurasian goshawk () weighing 0.85 kg and owned by a falconer was presented with a history of acute onset of weakness, dyspnea, diarrhea, and regurgitation of a fresh-thawed pigeon contaminated with acetamiprid, an insecticide used in the raptor enclosure. The raptor had eaten the contaminated pigeon approximately 10-12 hours earlier.

View Article and Find Full Text PDF

Since the ban of neonicotinoid insecticides in the European Union, sugar beet production is threatened by outbreaks of virus yellows (VY) disease, caused by several aphid-transmitted viruses, including the polerovirus beet mild yellowing virus (BMYV). As the symptoms induced may vary depending on multiple infections and other stresses, there is an urgent need for fast screening tests to evaluate resistance/tolerance traits in sugar beet accessions. To address this issue, we exploited the virus-induced gene silencing (VIGS) system, by introducing a fragment of a gene involved in chlorophyll synthesis in the BMYV genome.

View Article and Find Full Text PDF

Acetamiprid is a third-generation neonicotinoid insecticide that is now widely employed for the protection of crops grown in outdoor environments. This is because it is considerably less toxic to pollinating insects than other neonicotinoids. Previous studies have shown that acetamiprid has direct physiological effects on adult and larval bees.

View Article and Find Full Text PDF

Function Analysis of Heme Peroxidase Genes, MpPxd2 and MpPxd4, Under Thiacloprid Exposure in the Neonicotinoid-Resistant (Sulzer).

Antioxidants (Basel)

November 2024

Fujian Engineering Research Center for Green Pest Management, Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China.

The green peach aphid, , is a notorious pest worldwide. We collected a field population of the pest (FZQ-F) that exhibited high resistance to neonicotinoids. Exposure to neonicotinoids can induce oxidative damage in animals; however, it remains unclear whether antioxidant enzymes contribute to the innate immune response of neonicotinoid-resistant pests against high doses of insecticides.

View Article and Find Full Text PDF

Neonicotinoid insecticides have been widely applied in modern agriculture to improve crop productivity, but their residues have adverse impacts on the environment and human health. Hence, to address these issues, a portable self-powered/colorimetric dual-mode sensing platform was developed for the simple, rapid, precise, and sensitive on-site detection of acetamiprid (ATM) residues in vegetables. In this case, a multifunctional bioconjugate with specific recognition capability, excellent enzyme-like activity, and loading capacity is the key to the sensing design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!