Evaluation of Genetic Predisposition for MYCN-Amplified Neuroblastoma.

J Natl Cancer Inst

Affiliations of authors: Section of Hematology/Oncology, Department of Pediatrics (EAH, MAA, ADS, SLV, SLC), Section of Genetic Medicine, Department of Medicine (BES), and Institute for Genomics and Systems Biology, Center for Data Intensive Science (BES), University of Chicago, Chicago, IL; Division of Oncology and Center for Childhood Cancer Research and Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA (ZV, MD, LM, JMM, SJD); Department of Pediatrics and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA (JMM, SJD); Department of Pediatrics, Hofstra-Northwell School of Medicine and The Feinstein Institute for Medical Research, Manhasset, NY (KO).

Published: October 2017

To investigate genetic predispositions for MYCN-amplified neuroblastoma, we performed a meta-analysis of three genome-wide association studies totaling 615 MYCN-amplified high-risk neuroblastoma cases and 1869 MYCN-nonamplified non-high-risk neuroblastoma cases as controls using a fixed-effects model with inverse variance weighting. All statistical tests were two-sided. We identified a novel locus at 3p21.31 indexed by the single nucleotide polymorphism (SNP) rs80059929 (odds ratio [OR] = 2.95, 95% confidence interval [CI] = 2.17 to 4.02, Pmeta = 6.47 × 10-12) associated with MYCN-amplified neuroblastoma, which was replicated in 127 MYCN-amplified cases and 254 non-high-risk controls (OR = 2.30, 95% CI = 1.12 to 4.69, Preplication = .02). To confirm this signal is exclusive to MYCN-amplified tumors, we performed a second meta-analysis comparing 728 MYCN-nonamplified high-risk patients to identical controls. rs80059929 was not statistically significant in MYCN-nonamplified high-risk patients (OR = 1.24, 95% CI = 0.90 to 1.71, Pmeta = .19). SNP rs80059929 is within intron 16 in the KIF15 gene. Additionally, the previously reported LMO1 neuroblastoma risk locus was statistically significant only in patients with MYCN-nonamplified high-risk tumors (OR = 0.63, 95% CI = 0.53 to 0.75, Pmeta = 1.51 × 10-8; Pmeta = .95). Our results indicate that common genetic variation predisposes to different neuroblastoma genotypes, including the likelihood of somatic MYCN-amplification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279278PMC
http://dx.doi.org/10.1093/jnci/djx093DOI Listing

Publication Analysis

Top Keywords

mycn-amplified neuroblastoma
12
mycn-nonamplified high-risk
12
neuroblastoma cases
8
snp rs80059929
8
high-risk patients
8
neuroblastoma
7
mycn-amplified
6
evaluation genetic
4
genetic predisposition
4
predisposition mycn-amplified
4

Similar Publications

Targeting N-Myc in neuroblastoma with selective Aurora kinase A degraders.

Cell Chem Biol

January 2025

Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:

The N-Myc transcription factor, encoded by MYCN, is a mechanistically validated, yet challenging, target for neuroblastoma (NB) therapy development. In normal neuronal progenitors, N-Myc undergoes rapid degradation, while, in MYCN-amplified NB cells, Aurora kinase A (Aurora-A) binds to and stabilizes N-Myc, resulting in elevated protein levels. Here, we demonstrate that targeted protein degradation of Aurora-A decreases N-Myc levels.

View Article and Find Full Text PDF

The pseudouridine synthase DKC1 regulates internal ribosome entry site (IRES)-dependent translation and is upregulated in cancers by the MYC family of oncogenic transcription factors. We investigated the functional significance of DKC1 in MYCN-amplified neuroblastoma and its underlying mechanisms. A key function of DKC1 is to promote an ATF4-mediated gene expression program for amino acid metabolism and stress adaptation.

View Article and Find Full Text PDF

Background/aim: Treatment with retinoic acid (RA) often promotes neuroblastoma differentiation and growth inhibition, including the suppression of the expression of the MYCN oncogene. However, RA also targets protumoral chemokines, such as CCL2, which may contribute to the development of resistance. The present study aimed to investigate the regulation and function of CCL2 and N-Myc in RA-treated neuroblastoma cells.

View Article and Find Full Text PDF

Neuroblastoma is the most common extra-cranial solid tumour in children. Over half of all high-risk cases are expected to succumb to the disease even after chemotherapy, surgery, and immunotherapy. Although the importance of MYCN amplification in this disease is indisputable, the mechanistic details remain enigmatic.

View Article and Find Full Text PDF

Metabolic targeting of neuroblastoma, an update.

Cancer Lett

December 2024

School of Science and Technology, Nottingham Trent University, Clifton Site, Nottingham, NG11 8NS, UK; Division of Cellular and Molecular Pathology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK. Electronic address:

Neuroblastoma is a paediatric cancer of the sympathetic nervous system that originates from the neural crest and can be categorised into stages and risk groups. Risk groups inform treatment options and high-risk cases bear a 50 % probability of relapse post-treatment remission. In neuroblastoma, MYCN amplification is the strongest predictor of unfavourable patient prognosis; circa 50 % of high-risk cases display MYCN amplification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!