Purpose: The aims of this study were to identify a robust apoptosis marker suitable for both quantification and back-to-back analyses of programmed cell death and to define specific upstream targets for apoptosis in corneal cells.
Methods: Apoptotic cleavage of initiator caspases and their downstream targets such as lamins and poly-ADP ribose polymerase was investigated in human corneal endothelial cells (HCEC-12), keratocytes (HCK), epithelial cells (HCEp), and full-thickness corneas using Western blotting and confocal microscopy following apoptosis induction with staurosporine. We specifically focused on nuclear lamins, which have important structural and regulatory functions in the cell nucleus.
Results: The cleavage of lamin A in HCEC-12 was significantly increased following apoptotic induction compared with HCK. More importantly, lamin A cleavage was detected in a dose-dependent manner in full-thickness corneal tissue by both Western blot analysis and fluorescence microscopy. Our study also demonstrates that HCEp show approximately three-fold increase in caspase 6 cleavage compared with endothelial cells or keratocytes. The presence of cleaved caspase 9 was lower in endothelial cells compared with epithelial cells and keratocytes.
Conclusions: We successfully established lamin A cleavage as a quantifiable marker of apoptosis in both corneal cells and tissue. Quantification of lamin A cleavage by Western blotting followed by a back-to-back analysis with fluorescence microscopy was studied for the first time in the experimental (donor) corneal tissue. Screening of downstream apoptosis proteins and establishing cell type-specific protocols allowed us to identify possible targets (caspases, Apaf-1, etc.) for protective therapeutic approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.17-21830 | DOI Listing |
PNAS Nexus
December 2024
Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
The nuclear lamina (NL) lines the nuclear envelope (NE) to maintain nuclear structure in metazoan cells. The major NL components, the nuclear lamins contribute to the protection against NE rupture induced by mechanical stress. Lamin A (LA) and a short form of the splicing variant lamin C (LC) are diffused from the nucleoplasm to sites of NE rupture in immortalized mouse embryonic fibroblasts (MEFs).
View Article and Find Full Text PDFMamm Genome
November 2024
Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
Lamins play a crucial role in maintaining nuclear structure and function. Our study investigates the expression patterns and clinical implications of B-type lamins with a special focus on lamin B2 across various cancer types using comprehensive RNA sequencing datasets. We found that high expression levels of lamin B1 and lamin B2 are associated with decreased overall and disease-free survival in cancer.
View Article and Find Full Text PDFHistochem Cell Biol
November 2024
Department of Biomedical Sciences, Chosun University, Gwangju, 61452, Republic of Korea.
Cell Struct Funct
July 2024
Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research.
In metazoans, the nuclear envelope (NE) disassembles during the prophase and reassembles around segregated chromatids during the telophase. The process of NE formation has been extensively studied using live-cell imaging. At the early step of NE reassembly in human cells, specific pattern-like localization of inner nuclear membrane (INM) proteins, connected to the nuclear pore complex (NPC), was observed in the so-called "core" region and "noncore" region on telophase chromosomes, which corresponded to the "pore-free" region and the "pore-rich" region, respectively, in the early G1 interphase nucleus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!