Rate of acyl migration in lysophosphatidylcholine (LPC) is dependent upon the nature of the acyl group. Greater stability of sn-2 docosahexaenoyl LPC compared to the more saturated LPC species.

PLoS One

Section of Endocrinology, Department of Medicine, and Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Illinois, United States of America.

Published: November 2017

Several previous studies reported that sn-2 acyl lysophosphatidylcholines (LPCs) undergo rapid isomerization due to acyl migration, especially at physiological pH and temperature. However, these studies have been carried out using mostly sn-2 palmitoyl LPC, whereas the naturally occurring sn-2 LPCs are predominantly unsaturated. In this study, we investigated the acyl migration in four naturally occurring sn-2 acyl LPCs (sn-2 16:0, sn-2 18:1, sn-2 20:4, and sn-2 22:6) stored at various temperatures in aqueous or organic solvents, employing LC/MS to analyze the isomer composition. At 37°C and pH 7.4, the order of acyl migration rates (from sn-2 to sn-1) in aqueous buffer was 16:0 LPC> 18:1 LPC> 20:4 LPC> 22:6 LPC. The rate of isomerization of sn-2 16:0 LPC was 2-5 times greater than that of sn-2 22:6 under these conditions. Complexing the LPCs to serum albumin accelerated the acyl migration of all species, but sn-2 22:6 LPC was least affected by the presence of albumin. The migration rates were lower at lower temperatures (22°C, 4°C, and -20°C), but the differences between the LPC species persisted. All the sn-2 acyl LPCs were more stable in organic solvent (chloroform: methanol, 2:1 v/v), but the effect of the acyl groups on acyl migration was evident in the solvent also, at all temperatures. Storage of sn-2 22:6 LPC at -20°C for 4 weeks in the organic solvent resulted in about 10% isomerization, compared to 55% isomerization for sn-2 16:0. These results show that the sn-2 polyunsaturated LPCs can be stored at -20°C or below for several days without appreciable isomerization. Furthermore, they demonstrate that the sn-2 polyunsaturated LPCs generated in vivo are much more stable under physiological conditions than previously assumed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5678866PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0187826PLOS

Publication Analysis

Top Keywords

acyl migration
24
sn-2
18
sn-2 226
16
sn-2 acyl
12
sn-2 160
12
226 lpc
12
acyl
10
lpc
9
lpc species
8
naturally occurring
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!