Structural dynamics of the polyethylenimine-DNA and poly(l-lysine)-DNA complexes (polyplexes) was studied by steady-state and time-resolved fluorescence spectroscopy using the fluorescence resonance energy transfer (FRET) technique. During the formation of the DNA polyplexes, the negative phosphate groups (P) of DNA are bound by the positive amine groups (N) of the polymer. At N/P ratio 2, nearly all of the DNA's P groups are bound by the polymer N groups: these complexes form the core of the polyplexes. The excess polymer, added to this system to increase the N/P ratio to the values giving efficient gene delivery, forms a positively charged shell around the core polyplex. We investigated whether the exchange between the core and shell regions of PEI and PLL polyplexes takes place. Our results demonstrated a clear difference between the two studied polymers. Shell PEI can replace PEIs previously attached to DNA in the polyplex core, while PLL cannot. Such a dynamic structure of PEI polyplexes compared to a more static one found for PLL polyplexes partially explains the observed difference in the DNA transfection efficiency of these polyplexes. Moreover, the time-resolved fluorescence spectroscopy revealed additional details on the structure of PLL polyplexes: in between the core and shell, there is an intermediate layer where both core and shell PLLs or their parts overlap.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.7b08394 | DOI Listing |
J Phys Chem B
January 2025
College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
Under conditions that are close to the real cellular environment, the human telomeric single-stranded overhang (∼200 nt) consisting of tens of TTAGGG repeats tends to form higher order structures of multiple G-quadruplex (G4) blocks. On account of the higher biological relevance of higher order G4 structures, ligand compounds binding to higher order G4 are significant for the drug design toward inhibiting telomerase activity. Here, we study the interaction between a cationic porphyrin derivative, 5,10,15,20-tetra{4-[2-(1-methyl-1-piperidinyl)propoxy]phenyl}porphyrin (T4), and a human telomeric G4-dimer (AG(TAG)) in the mimic intracellular molecularly crowded environment (PEG as a crowding agent) and K or Na solution (i.
View Article and Find Full Text PDFFood Chem X
January 2025
Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
An on-site, sensitive, and cost-effective method for determining aflatoxin B1 (AFB1) in rice samples is proposed, combining magnetic solid phase extraction (MSPE) and time-resolved fluorescence immunochromatography (TRFICA) techniques. Cost-effective rice husks were carbonized and combined with nanomaterials to make magnetic nanocomposites that acted as effective adsorbents in MSPE. Under optimal conditions, the entire process was completed in 15 min with a visual detection limit of 0.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
Reaction and interaction dynamics of azobenzene-tethered DNA (photoresponsive DNA) with T7 RNA polymerase (T7RNAP) were studied after photoisomerization of azobenzene from the - to -forms using the transient grating (TG) and time-resolved fluorescence polarization techniques. Two types of photoresponsive DNA were examined: AzoPBD, tethered at the protein binding site, and AzoTATA, tethered at the unwinding site. A diffusion change was observed after photoexcitation of -AzoPBD within 1 ms, and this change is explained in terms of a structural change from a bent to an extended conformation upon the -to- photoisomerization.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China.
Flavonoids, a group of natural pigments, have attracted notable attention for their intrinsic fluorescent bioactive properties and potential therapeutic implications. Recent studies have suggested that the photoexcitation of specific flavonoids can also lead to the formation of triplet states, thereby potentially enhancing their applications in photoactivated antioxidant mechanisms. However, the crucial mechanism details about triplet state formation are still poorly understood.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoyo 610-0321, Japan.
Excited-state proton transfer (ESPT) reactions of 5-cyano-2-naphthol (5CN2) and 5,8-dicyano-2-naphthol (DCN2) were investigated in protic ionic liquids (PILs) composed of quaternary ammonium (NH) ( = 2, 4, or 8) and hexanoate (CHCOO) using time-resolved fluorescence spectroscopy. The effects of the number of alkyl carbons in the cation and the basicity of the anion on the reaction yield and dynamics were examined. In a series of [NH][CHCOO], fluorescence from the hydrogen-bonding complex (AHBX) of a proton-dissociated form (RO) with a solvent acid in the electronic excited state was observed between the fluorescence bands of an acidic form (ROH) and an anionic form (RO) as in the case of [NH][CFCOO] (Fujii et al.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!