Estuaries are an important source of greenhouse gases to the atmosphere, but uncertainties remain in the flux rates and production pathways of greenhouse gases in these dynamic systems. This study performs simultaneous high resolution measurements of the three major greenhouse gases (carbon dioxide, methane, and nitrous oxide) as well as carbon stable isotope ratios of carbon dioxide and methane, above and below the pycnocline along a salt wedge estuary (Yarra River estuary, Australia). We identified distinct zones of elevated greenhouse gas concentrations. At the tip of salt wedge, average CO and NO concentrations were approximately five and three times higher than in the saline mouth of the estuary. In anaerobic bottom waters, the natural tracer radon (Rn) revealed that porewater exchange was the likely source of the highest methane concentrations (up to 1302 nM). Isotopic analysis of CH showed a dominance of acetoclastic production in fresh surface waters and hydrogenotrophic production occurring in the saline bottom waters. The atmospheric flux of methane (in CO equivalent units) was a major (35-53%) contributor of atmospheric radiative forcing from the estuary, while NO contributed <2%. We hypothesize that the release of bottom water gases when stratification episodically breaks down will release large pulses of greenhouse gases to the atmosphere.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.7b04627 | DOI Listing |
Natl Sci Rev
February 2025
Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
The riverine NO fluxes are assumed to linearly increase with nitrate loading. However, this linear relationship with a uniform EF is poorly constrained, which impedes the NO estimation and mitigation. Our meta-analysis discovered a universal NO emission baseline (EF = k/[NO ], k = 0.
View Article and Find Full Text PDFBMC Surg
January 2025
Division of Thoracic Surgery, Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health Network - Central Region, Edison, NJ, 08820, United States of America.
The healthcare sector contributes up to 4.6% of global greenhouse gas emissions. The surgical system contributes predominantly.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Geography and Spatial Information Techniques, School of Civil and Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, China.
Climate change poses significant global challenges, especially in the West African sub-region, with high temperature and precipitation patterns variability, threatening socio-economic stability and ecosystem health. While global factors such as greenhouse gases and oceanic circulations shape regional climates, this study focuses on the understudied role of local climatic variables in influencing near-surface air temperature (NST) in Ghana from 1981 to 2020. Based on ground observations, our findings reveal significant correlations between land surface temperature (LST) and NST before and after the identified breakpoint year of 2001.
View Article and Find Full Text PDFSci Data
January 2025
Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
Permafrost soils store vast amounts of organic carbon, and their thawing due to climate warming accelerates the release of carbon as methane and carbon dioxide, exacerbating global climate change. Understanding the distribution of greenhouse gases trapped in these soils and predicting their behavior upon thawing is essential for accurately modeling climate feedbacks. This study presents an integrated biogeochemical and microbial dataset from ~1.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark.
Wetlands are important carbon sinks for mitigating climate warming. In this paper, greenhouse gas (GHG) fluxes and carbon sequestration capacity of freshwater wetlands, coastal wetlands and constructed wetlands around the world are evaluated, and strategies to improve carbon sequestration by wetlands are proposed based on the main influencing factors. Air temperature and average annual rainfall are significantly positively correlated with CH flux and NO flux in freshwater wetlands and coastal wetlands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!