Microaerophilic alkane degradation in Pseudomonas extremaustralis: a transcriptomic and physiological approach.

J Ind Microbiol Biotechnol

Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes, 2160, C1428EGA, Buenos Aires, Argentina.

Published: January 2018

Diesel fuel is one of the most important sources of hydrocarbon contamination worldwide. Its composition consists of a complex mixture of n-alkanes, branched alkanes and aromatic compounds. Hydrocarbon degradation in Pseudomonas species has been mostly studied under aerobic conditions; however, a dynamic spectrum of oxygen availability can be found in the environment. Pseudomonas extremaustralis, an Antarctic bacterium isolated from a pristine environment, is able to degrade diesel fuel and presents a wide microaerophilic metabolism. In this work RNA-deep sequence experiments were analyzed comparing the expression profile in aerobic and microaerophilic cultures. Interestingly, genes involved in alkane degradation, including alkB, were over-expressed in micro-aerobiosis in absence of hydrocarbon compounds. In minimal media supplemented with diesel fuel, n-alkanes degradation (C13-C19) after 7 days was observed under low oxygen conditions but not in aerobiosis. In-silico analysis of the alkB promoter zone showed a putative binding sequence for the anaerobic global regulator, Anr. Our results indicate that some diesel fuel components can be utilized as sole carbon source under microaerophilic conditions for cell maintenance or slow growth in a Pseudomonas species and this metabolism could represent an adaptive advantage in polluted environments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10295-017-1987-zDOI Listing

Publication Analysis

Top Keywords

diesel fuel
16
alkane degradation
8
degradation pseudomonas
8
pseudomonas extremaustralis
8
pseudomonas species
8
microaerophilic
4
microaerophilic alkane
4
degradation
4
pseudomonas
4
extremaustralis transcriptomic
4

Similar Publications

The drivetrain is an essential component of the diesel firefighting pump system, affecting the engine's operating mode, power, economy, and environment. This study proposes a process to design and optimize the transmission ratio and working load of the diesel firefighting pump system. AVL BOOST software was used to model the 6-cylinder diesel engine and analyze the performance characteristics at its partial loads as parameters for finding the optimal transmission ratio of the drivetrain.

View Article and Find Full Text PDF

Biodiesel offers an alternative to fossil fuels, primarily because it is derived from renewable sources, with the potential to mitigate issues such as pollutant and greenhouse gas emissions, resource scarcity, and the market instability of petroleum derivatives. However, lower durability and stability pose challenges. To address this, researchers worldwide are exploring technologies that employ specific molecules to slow down biodiesel's oxidation process, thereby preserving its key physicochemical properties.

View Article and Find Full Text PDF

Hydrocracking has become the main technology for producing diesel fuel in many refineries, the key process to meeting new product specifications as environmental regulations for transportation fuels become more stringent. The efficacy of the hydrocracking catalyst is a pivotal determinant of the reaction performance. This study leveraged high-throughput experimentation to closely examine the impact of support properties on both the catalytic activity and the selectivity of middle distillates.

View Article and Find Full Text PDF

Nano-AlO derived from recyclable sources emerges as a promising sustainable solution for enhancing diesel engine efficiency while mitigating emissions. However, a lack of an in-depth understanding of the health hazard aspect still challenges its commercial applications. To this end, nano-AlO/diesel (NAD) blends prepared via ultrasonic homogenization were experimentally and analytically investigated under various injection timings and excess air coefficients to explore the potential of nano-AlO for balancing energy performance and emissions.

View Article and Find Full Text PDF

Voltage-Induced Bromide Redox Enables Capacity Restoration of Fast-Charging Batteries.

Adv Mater

December 2024

College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China.

Fast-charging lithium-ion batteries (LIBs) are essential for electric vehicles (EVs) to compete with conventional gasoline ones in terms of charging viability, yet the aggressive capacity drop in fast-charging scenarios gives rise to concerns regarding durability and sustainability. Herein, it is clarified that for fast-charging batteries, the excessive lithium (Li) plating on graphite anode inevitably brings capacity fading, and the concurrent accumulation of LiO-dominant passivation species that form dead Li is the main reason for their poor rechargeability. To refresh the passivated graphite, a voltage-induced activation mechanism is developed to leverage bromide (Br/Br ) redox couple for LiO and isolated Li activation in situ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!