The thermally dewetted metal nano-islands have been actively investigated as cost-effective SERS-active substrates with a large area, good reproducibility and repeatability via simple fabrication process. However, the correlation between the dewetting temperature of metal film and SERS intensity hasn't been systematically studied. In this work, taking Ag nano-islands (AgNIs) as an example, we reported a strategy to investigate the correlation between the dewetting temperature of metal film and SERS intensity. We described the morphology evolution of AgNIs on the SiO planar substrate in different temperatures and got the quantitative information in surface-limited diffusion process (SLDP) as a function of annealing temperature via classical mean-field nucleation theory. Those functions were further used in the simulation of electromagnetic field to obtain the correlation between the dewetting temperature of Ag film and theoretical analysis. In addition, Raman mapping was done on samples annealed at different temperatures, with R6G as an analyte, to accomplish the analysis of the correlation between the dewetting temperature of Ag film and SERS intensity, which is consistent with the theoretical analysis. For SLDP, we used the morphological characterization of five samples prepared by different annealing temperatures to successfully illustrate the change in SERS intensity with the temperature fluctuation, obtaining a small deviation between the experimental results and theoretic prediction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5676717 | PMC |
http://dx.doi.org/10.1038/s41598-017-15372-y | DOI Listing |
Nanotechnology
November 2024
Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México C.P. 04510, Mexico.
This study investigates the fluence-dependent evolution of gold nanoparticles formed through single nanosecond pulsed laser dewetting of a gold thin film on a fused silica substrate. By employing a well-defined Airy-like laser spatial profile and reconstructing scanning electron microscope images across the irradiation spot into a panoramic view, we achieve a detailed continuous analysis of the nanoparticle formation process. Our morphological analysis, combined with finite element thermal simulations directly correlated with the applied fluence, identifies two distinct thresholds.
View Article and Find Full Text PDFACS Photonics
September 2024
Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, 73010 Arnesano, Italy.
Creating plasmonic nanoparticles on a tapered optical fiber (TF) tip enables a remote surface-enhanced Raman scattering (SERS) sensing probe, ideal for challenging sampling scenarios like biological tissues, site-specific cells, on-site environmental monitoring, and deep brain structures. However, nanoparticle patterns fabricated from current bottom-up methods are mostly random, making geometry control difficult. Uneven statistical distribution, clustering, and multilayer deposition introduce uncertainty in correlating device performance with morphology.
View Article and Find Full Text PDFACS Omega
September 2024
Institute of Chemistry, State University of Campinas, 13083-970 Campinas, Brazil.
We report a terahertz time-domain study of dewetting kinetics on two time scales: femtoseconds and in real time (on the order of minutes). We recorded full electric field terahertz time domain signals with femtosecond time resolution during dewetting of water in cellulose. The femtosecond time-domain signals were analyzed with respect to the amplitude and signal emission times and how these two quantities changed over the course of dewetting kinetics.
View Article and Find Full Text PDFBiophys J
October 2024
Center for Structural Biology (CBS), CNRS, INSERM, Montpellier University, Montpellier, France. Electronic address:
Many proteins with intrinsically disordered regions undergo liquid-liquid phase separation under specific conditions in vitro and in vivo. These complex biopolymers form a metastable phase with distinct mechanical properties defining the timescale of their biological functions. However, determining these properties is nontrivial, even in vitro, and often requires multiple techniques.
View Article and Find Full Text PDFNano Lett
June 2024
Center for Ultrafast Science and Technology, School of Physics and Astronomy, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Irreversible ultrafast events are prevalent in nature, yet their capture in real time poses significant challenges. Traditional single-shot imaging technologies, which utilize a single optical pump and single delayed electron probe, offer high spatiotemporal resolution but fail to capture the entire dynamic evolutions. Here, we introduce a novel imaging method employing a single optical pump and delayed multiple electron probes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!