Background: Patients with congenital diaphragmatic hernia (CDH) have structural and functional different pulmonary vessels, leading to pulmonary hypertension. They often fail to respond to standard vasodilator therapy targeting the major vasoactive pathways, causing a high morbidity and mortality. We analyzed whether the expression of crucial members of these vasoactive pathways could explain the lack of responsiveness to therapy in CDH patients.

Methods: The expression of direct targets of current vasodilator therapy in the endothelin and prostacyclin pathway was analyzed in human lung specimens of control and CDH patients.

Results: CDH lungs showed increased expression of both ETA and ETB endothelin receptors and the rate-limiting Endothelin Converting Enzyme (ECE-1), and a decreased expression of the prostaglandin-I receptor (PTGIR). These data were supported by increased expression of both endothelin receptors and ECE-1, endothelial nitric oxide synthase and PTGIR in the well-established nitrofen-CDH rodent model.

Conclusions: Together, these data demonstrate aberrant expression of targeted receptors in the endothelin and prostacyclin pathway in CDH already early during development. The analysis of this unique patient material may explain why a significant number of patients do not respond to vasodilator therapy. This knowledge could have important implications for the choice of drugs and the design of future clinical trials internationally.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688796PMC
http://dx.doi.org/10.1186/s12931-017-0670-2DOI Listing

Publication Analysis

Top Keywords

vasoactive pathways
12
vasodilator therapy
12
congenital diaphragmatic
8
diaphragmatic hernia
8
pulmonary hypertension
8
endothelin prostacyclin
8
prostacyclin pathway
8
increased expression
8
endothelin receptors
8
expression
6

Similar Publications

Diosmetin alleviates TNFα-induced liver inflammation by improving liver sinusoidal endothelial cell dysfunction.

Biomed Pharmacother

January 2025

Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Gronostajowa 7, Kraków 30-387, Poland. Electronic address:

Sterile inflammation contributes to the development of many liver diseases including non-alcoholic fatty liver disease. Tumor necrosis factor alpha (TNFα) is a key cytokine driving liver inflammation primarily through pro-inflammatory activation of liver sinusoidal endothelial cells (LSEC). The knowledge of whether modulating LSEC activation can alleviate liver inflammation is scarce.

View Article and Find Full Text PDF

Social hierarchies are a common form of social organization across species. Although hierarchies are largely stable across time, animals may socially ascend or descend within hierarchies depending on environmental and social challenges. Here, we develop a novel paradigm to study social ascent and descent within male CD-1 mouse social hierarchies.

View Article and Find Full Text PDF

Aim: Despite dysfunctional vasoactive intestinal polypeptide-positive interneurons (VIP-INs) being linked to the emergence of neurodevelopmental disorders, the temporal profile of VIP-IN functional maturation and cortical network integration remains unclear.

Methods: Postnatal VIP-IN development was traced with patch clamp experiments in the somatosensory cortex of Vip-IRES-cre x tdTomato mice. Age groups were chosen during barrel field formation, before and after activation of main sensory inputs, and in adult animals (postnatal days (P) P3-4, P8-10, P14-16, and P30-36).

View Article and Find Full Text PDF

Characterizing astrocyte-mediated neurovascular coupling by combining optogenetics and biophysical modeling.

J Cereb Blood Flow Metab

January 2025

Neuronal Mass Dynamics Lab, Department of Biomedical Engineering, Florida International, University, Miami, FL, USA.

Vasoactive signaling from astrocytes is an important contributor to the neurovascular coupling (NVC), which aims at providing energy to neurons during brain activation by increasing blood perfusion in the surrounding vasculature. Pharmacological manipulations have been previously combined with experimental techniques (e.g.

View Article and Find Full Text PDF

Interplay of fatty acids, insulin and exercise in vascular health.

Lipids Health Dis

January 2025

Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.

Fatty acid metabolism, exercise, and insulin action play critical roles in maintaining vascular health, especially relevant in metabolic disorders such as obesity, type 2 diabetes, and cardiovascular disease. Insulin, a vasoactive hormone, induces arterial vasodilation throughout the arterial tree, increasing arterial compliance and enhancing tissue perfusion. These effects, however, are impaired in individuals with obesity and type 2 diabetes, and evidence suggests that vascular insulin resistance contributes to the pathogenesis of type 2 diabetes and its cardiovascular complications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!