Expression profile analysis of long non-coding RNAs involved in the metformin-inhibited gluconeogenesis of primary mouse hepatocytes.

Int J Mol Med

Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China.

Published: January 2018

Long non-coding RNAs (lncRNAs) have been demonstrated to regulate metabolic tissue development and function, including adipogenesis, hepatic lipid metabolism, islet function and energy balance. However, the role of lncRNAs in gluconeogenesis remains completely unknown. Metformin reduces glucose output mainly via the inhibition of gluconeogenesis. In the present study, the lncRNA expression profile of primary mouse hepatocytes exposed to cyclic adenosine monophosphate (cAMP), a gluconeogenic stimulus, with or without metformin was analyzed by microarray. Among the 22,016 lncRNAs that were identified, 456 were upregulated and 409 were downregulated by cAMP (fold-change ≥2.0). Furthermore, the cAMP-induced upregulation of 189 lncRNAs and downregulation of 167 lncRNAs was attenuated by metformin. The expression levels of eight lncRNAs were validated by reverse transcription-quantitative polymerase chain reaction, and the results were consistent with those of the microarray analysis. Among them, two lncRNAs NR_027710 and ENSMUST00000138573, were identified to have an association with two protein coding genes, namely peroxisome proliferator-activated receptor-γ coactivator-1α, a critical transcriptional coactivator in gluconeogenesis, and G protein-coupled receptor 155, respectively. The two protein coding genes exhibited similar expression patterns to their associated lncRNAs. The findings of the present study suggest that lncRNAs are potentially involved in the regulation of gluconeogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746302PMC
http://dx.doi.org/10.3892/ijmm.2017.3243DOI Listing

Publication Analysis

Top Keywords

expression profile
8
long non-coding
8
non-coding rnas
8
primary mouse
8
mouse hepatocytes
8
protein coding
8
coding genes
8
lncrnas
7
gluconeogenesis
5
expression
4

Similar Publications

Transcriptome sequencing reveals regulatory genes associated with neurogenic hearing loss.

BMC Med Genomics

January 2025

Department of Otolaryngology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, WuHua District, Kunming City, Yunnan Province, China.

Hearing loss is a prevalent condition with a significant impact on individuals' quality of life. However, comprehensive studies investigating the differential gene expression and regulatory mechanisms associated with hearing loss are lacking, particularly in the context of diverse patient samples. In this study, we integrated data from 10 patients across different regions, age groups, and genders, with their data retrieved from a public transcriptome database, to explore the molecular basis of hearing loss.

View Article and Find Full Text PDF

B cells have emerged as central players in the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC). However, although there is clear evidence for their involvement in cancer immunity, scanty data exist on the characterization of B cell phenotypes, bioenergetic profiles and possible interactions with T cells in the context of NSCLC. In this study, using polychromatic flow cytometry, mass cytometry, and spatial transcriptomics we explored the intricate landscape of B cell phenotypes, bioenergetics, and their interaction with T cells in NSCLC.

View Article and Find Full Text PDF

Early-onset (EOCC) and late-onset cervical cancers (LOCC) represent two clinically distinct subtypes, each defined by unique clinical manifestations and therapeutic responses. However, their immunological profiles remain poorly explored. Herein, we analyzed single-cell transcriptomic data from 4 EOCC and 4 LOCC samples to compare their immune architectures.

View Article and Find Full Text PDF

Blood from septic patients with necrotising soft tissue infection treated with hyperbaric oxygen reveal different gene expression patterns compared to standard treatment.

BMC Med Genomics

January 2025

Department of Anaesthesiology, Centre of Head and Orthopedics, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 6, Copenhagen, 2100, Denmark.

Background: Sepsis and shock are common complications of necrotising soft tissue infections (NSTI). Sepsis encompasses different endotypes that are associated with specific immune responses. Hyperbaric oxygen (HBO) treatment activates the cells oxygen sensing mechanisms that are interlinked with inflammatory pathways.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. Single-cell RNA sequencing (scRNA-seq) provides gene expression profiles at the single-cell level. Hence, we evaluated gene expression in the peripheral blood of patients with COPD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!