A simple one-pot synthesis of Ni nanoparticle/ordered mesoporous carbon composite electrode materials is demonstrated for electrosynthesis for the first time. The obtained nanocomposites have uniform mesopore sizes (3.0-3.7 nm), large specific surface areas (506-633 m g), high pore volumes (0.28-0.38 cm g), well-graphitized carbon frameworks, and uniformly dispersed Ni nanoparticles (7-15 nm) embedded in the carbon pore walls. The prepared materials show very high performance in the selective (∼84%) electrocatalytic reduction of aromatic ketones into alcohols (∼79%).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7nr06602c | DOI Listing |
Chem Sci
January 2025
Institute of Chemistry, Academia Sinica 128 Academia Road, Section 2, Nankang Taipei 115201 Taiwan
Nanographenes and polycyclic aromatic hydrocarbons exhibit many intriguing physical properties and have potential applications across a range of scientific fields, including electronics, catalysis, and biomedicine. To accelerate the development of such applications, efficient and reliable methods for accessing functionalized analogs are required. Herein, we report the efficient synthesis of functionalized small nanographenes from readily available iodobiaryl and diarylacetylene derivatives a one-pot, multi-annulation sequence catalyzed by a single palladium catalyst.
View Article and Find Full Text PDFNanoscale
January 2025
Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany.
Tunable optical properties exhibited by semiconductor nanocrystals (NCs) in the near infrared (NIR) spectral region are of particular interest in various applications, such as telecommunications, bioimaging, photodetection, photovoltaics, . While lead and mercury chalcogenide NCs do exhibit exemplary optical properties in the NIR, Cu-In-Se (CISe)-based NCs are a suitable environment-friendly alternative to these toxic materials. Several reports of NIR-emitting (quasi)spherical CISe NCs have been published, but their more complex-shaped counterparts remain rather less explored.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, China; College of Food Science, Northeast Agricultural University, Harbin 150030, China.
Polysaccharide-based metal-organic frameworks have attracted widespread attention due to their combination of the biocompatibility and flexibility of polysaccharides. Cyclodextrin are interesting bio-ligands in the construction of polysaccharide-based MOFs. Conventional methods for preparing cyclodextrin metal-organic frameworks (CD-MOFs) are often time-consuming and inefficient.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Institute of Science and Engineering, Kanazawa University, Kakuma machi, Kanazawa 920 1192, Japan. Electronic address:
Lignocellulosic biomass-based plastics provide a sustainable alternative to petroleum-based plastics by converting agricultural by-products into value-added materials, promoting a circular economy. This study investigates the development of thermoplastics from sugar beet pulp (SBP), a by-product rich in cellulose and pectin. A one-pot direct transesterification process was used to fully substitute hydroxy groups in SBP with acyl chains of varying lengths (C2-C10), achieving up to 96 % substitution.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China. Electronic address:
Cuproptosis shows great prospects in cancer treatments. However, insufficient intracellular copper amount, low-level redox homeostasis, and hypoxic tumor microenvironment severely restrict cuproptosis efficacy. Herein, hydrazided hyaluronan-templated decorated CuO-doxorubicin (CuDT) nanodot clusters (NCs) are developed for efficient doxorubicin (DOX)-sensitized cuproptosis therapy in breast cancer via a three-pronged strategy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!