Objectives: Amniotic fluid-derived stem cells (AFSCs) possessing multilineage differentiation potential are proposed as a novel and accessible source for cell-based therapy and tissue regeneration. Glial-derived neurotrophic factor (GDNF) has been hypothesized to promote the therapeutic effect of AFSCs on markedly ameliorating renal dysfunction. The aim of this study was to investigate whether AFSCs equipped with GDNF (GDNF-AFSCs) had capabilities of attenuating mouse renal tubular epithelial cells (mRTECs) apoptosis and evaluate its potential mechanisms.

Materials And Methods: A hypoxia-reoxygenation (H/R) model of the mRTECs was established. Injured mRTECs were co-cultured with GDNF-AFSCs in a transwell system. The mRNA expressions of hepatocytes growth factor (HGF) and fibroblast growth factor (bFGF) were detected by qRT-PCR. Changes of intracelluar reactive oxygen species (ROS) and the level of superoxide dismutase (SOD) and malondialdehyde (MDA) were examined. The expressions of nitrotyrosine, Gp91-phox, Bax, and Bcl-2 were determined by Western blotting. Cell apoptosis was assayed by flow cytometry, and caspase-3 activity was monitored by caspase-3 activity assay kit.

Results: Our study revealed that expression of growth factors was increased and oxidative stress was dramatically counteracted in GDNF-AFSCs-treated group. Furthermore, apoptosis induced by H/R injury was inhibited in mRTECs by GDNF-AFSCs.

Conclusions: These data indicated that GDNF-AFSCs are beneficial to repairing damaged mRTECs significantly in vitro, which suggests GDNF-AFSCs provide new hopes of innovative interventions in different kidney disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528868PMC
http://dx.doi.org/10.1111/cpr.12400DOI Listing

Publication Analysis

Top Keywords

amniotic fluid-derived
8
fluid-derived stem
8
stem cells
8
growth factor
8
caspase-3 activity
8
mrtecs
5
protective gdnf-engineered
4
gdnf-engineered amniotic
4
cells renal
4
renal ischaemia
4

Similar Publications

Regenerative medicine and tissue engineering aim to restore or replace impaired organs and tissues using cell transplantation supported by scaffolds. Recently scientists are focusing on developing new biomaterials that optimize cellular attachment, migration, proliferation, and differentiation. Nanoparticles, such as graphene oxide (GO), have emerged as versatile materials due to their high surface-to-volume ratio and unique chemical properties, such as electrical conductivity and flexibility.

View Article and Find Full Text PDF

: Research on the roles of stem cells in necrotizing enterocolitis (NEC) has primarily focused on the effects of bone marrow- and amniotic fluid-derived stem cells in mitigating the clinical manifestations of the disease. However, the potential of adipose tissue-derived stem cells (ADSCs) remains unexplored in this context. The aim of this study was to evaluate the therapeutic potential of ADSC administration during the active inflammatory phase of NEC, with a specific focus on reducing the levels of the inflammatory cytokines IL-1 and IL-6.

View Article and Find Full Text PDF
Article Synopsis
  • Mesenchymal stem cells (MSCs) from gestational tissues are promising for treating congenital malformations but face challenges like invasiveness, prompting the exploration of less risky alternatives like naturally occurring exosomes (EXOs) and their mimics (MIMs) from amniotic fluid-derived MSCs (AF-MSCs).
  • The study involved creating MIMs, comparing their properties to EXOs, and evaluating their safety and distribution in a mouse model predisposed to neural tube defects.
  • Results indicated that MIMs and EXOs have similar characteristics, with MIMs yielding three times more product, and no adverse effects were found in pregnant mice, making MIMs a promising, minimally invasive therapeutic option.
View Article and Find Full Text PDF

Background: Intracavernous (IC) injections of stem cells has been shown to ameliorate cavernous nerve (CN)-induced erectile dysfunction (ED). However, the regenerative effects underlying the recovery of erectile function (EF) in human amniotic fluid-derived stem cells (hAFSCs) remain unclear. In the bilateral cavernous nerve crushing (BCNC) injury rat paradigm, we sought to ascertain the effects of hAFSC treatment on EF recovery during the incipient phase.

View Article and Find Full Text PDF

There is little research concerning the role of stem cells in necrotizing enterocolitis (NEC). Bone marrow-derived mesenchymal stem cells (BMDSC) and amniotic fluid-derived stem cells significantly reduced the amount and severity of NEC in the animal models. ADSCs share similar surface markers and differentiation potential with BMDSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!