Objectives: Amniotic fluid-derived stem cells (AFSCs) possessing multilineage differentiation potential are proposed as a novel and accessible source for cell-based therapy and tissue regeneration. Glial-derived neurotrophic factor (GDNF) has been hypothesized to promote the therapeutic effect of AFSCs on markedly ameliorating renal dysfunction. The aim of this study was to investigate whether AFSCs equipped with GDNF (GDNF-AFSCs) had capabilities of attenuating mouse renal tubular epithelial cells (mRTECs) apoptosis and evaluate its potential mechanisms.
Materials And Methods: A hypoxia-reoxygenation (H/R) model of the mRTECs was established. Injured mRTECs were co-cultured with GDNF-AFSCs in a transwell system. The mRNA expressions of hepatocytes growth factor (HGF) and fibroblast growth factor (bFGF) were detected by qRT-PCR. Changes of intracelluar reactive oxygen species (ROS) and the level of superoxide dismutase (SOD) and malondialdehyde (MDA) were examined. The expressions of nitrotyrosine, Gp91-phox, Bax, and Bcl-2 were determined by Western blotting. Cell apoptosis was assayed by flow cytometry, and caspase-3 activity was monitored by caspase-3 activity assay kit.
Results: Our study revealed that expression of growth factors was increased and oxidative stress was dramatically counteracted in GDNF-AFSCs-treated group. Furthermore, apoptosis induced by H/R injury was inhibited in mRTECs by GDNF-AFSCs.
Conclusions: These data indicated that GDNF-AFSCs are beneficial to repairing damaged mRTECs significantly in vitro, which suggests GDNF-AFSCs provide new hopes of innovative interventions in different kidney disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528868 | PMC |
http://dx.doi.org/10.1111/cpr.12400 | DOI Listing |
Int J Mol Sci
December 2024
Cell Reprogramming and Differentiation Lab, "G. d'Annunzio University" of Chieti-Pescara, 66100 Chieti, Italy.
Regenerative medicine and tissue engineering aim to restore or replace impaired organs and tissues using cell transplantation supported by scaffolds. Recently scientists are focusing on developing new biomaterials that optimize cellular attachment, migration, proliferation, and differentiation. Nanoparticles, such as graphene oxide (GO), have emerged as versatile materials due to their high surface-to-volume ratio and unique chemical properties, such as electrical conductivity and flexibility.
View Article and Find Full Text PDFBiomedicines
December 2024
Laboratory of Centre for Preclinical Research, Chair and Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland.
: Research on the roles of stem cells in necrotizing enterocolitis (NEC) has primarily focused on the effects of bone marrow- and amniotic fluid-derived stem cells in mitigating the clinical manifestations of the disease. However, the potential of adipose tissue-derived stem cells (ADSCs) remains unexplored in this context. The aim of this study was to evaluate the therapeutic potential of ADSC administration during the active inflammatory phase of NEC, with a specific focus on reducing the levels of the inflammatory cytokines IL-1 and IL-6.
View Article and Find Full Text PDFStem Cell Res Ther
December 2024
Center for Precision Environmental Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.
Stem Cell Res Ther
November 2024
School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, 242062, Taiwan.
Background: Intracavernous (IC) injections of stem cells has been shown to ameliorate cavernous nerve (CN)-induced erectile dysfunction (ED). However, the regenerative effects underlying the recovery of erectile function (EF) in human amniotic fluid-derived stem cells (hAFSCs) remain unclear. In the bilateral cavernous nerve crushing (BCNC) injury rat paradigm, we sought to ascertain the effects of hAFSC treatment on EF recovery during the incipient phase.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland.
There is little research concerning the role of stem cells in necrotizing enterocolitis (NEC). Bone marrow-derived mesenchymal stem cells (BMDSC) and amniotic fluid-derived stem cells significantly reduced the amount and severity of NEC in the animal models. ADSCs share similar surface markers and differentiation potential with BMDSCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!