Objectives/hypothesis: TNM-classification inadequately estimates patient-specific overall survival (OS). We aimed to improve this by developing a risk-prediction model for patients with advanced larynx cancer.

Study Design: Cohort study.

Methods: We developed a risk prediction model to estimate the 5-year OS rate based on a cohort of 3,442 patients with T3T4N0N+M0 larynx cancer. The model was internally validated using bootstrapping samples and externally validated on patient data from five external centers (n = 770). The main outcome was performance of the model as tested by discrimination, calibration, and the ability to distinguish risk groups based on tertiles from the derivation dataset. The model performance was compared to a model based on T and N classification only.

Results: We included age, gender, T and N classification, and subsite as prognostic variables in the standard model. After external validation, the standard model had a significantly better fit than a model based on T and N classification alone (C statistic, 0.59 vs. 0.55, P < .001). The model was able to distinguish well among three risk groups based on tertiles of the risk score. Adding treatment modality to the model did not decrease the predictive power. As a post hoc analysis, we tested the added value of comorbidity as scored by American Society of Anesthesiologists score in a subsample, which increased the C statistic to 0.68.

Conclusions: A risk prediction model for patients with advanced larynx cancer, consisting of readily available clinical variables, gives more accurate estimations of the estimated 5-year survival rate when compared to a model based on T and N classification alone.

Level Of Evidence: 2c. Laryngoscope, 128:1140-1145, 2018.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lary.26990DOI Listing

Publication Analysis

Top Keywords

model
14
advanced larynx
12
larynx cancer
12
model based
12
based classification
12
external validation
8
risk-prediction model
8
5-year survival
8
model patients
8
patients advanced
8

Similar Publications

Marine and atmospheric transport modeling supporting nuclear preparedness in Norway: Recent achievements and remaining challenges.

Sci Total Environ

January 2025

Center for Environmental Radioactivity (CERAD) CoE, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O.Box 5003, NO-1432 Ås, Norway.

Numerical transport models are important tools for nuclear emergency decision makers in that they rapidly provide early predictions of dispersion of released radionuclides, which is key information to determine adequate emergency protective measures. They can also help us understand and describe environmental processes and can give a comprehensive assessment of transport and transfer of radionuclides in the environment. Transport of radionuclides in air and ocean is affected by a number of different physico-chemical processes.

View Article and Find Full Text PDF

Phosphorus (P) movement in soils is influenced by flow velocities, diffusion rates, and several soil characteristics and properties. In acidic soils, P is tightly bound to soil particles, reducing its availability to plants. Organomineral fertilizers combine organic matter with mineral nutrients, enhancing P fertilization efficiency, and reducing environmental impacts.

View Article and Find Full Text PDF

Agricultural systems are both emitters of greenhouse gases and have the potential to sequester carbon, especially agroforestry systems. Coffee agroforestry systems offer a wide range of intensities of use of agricultural inputs and densities and management of shade trees. We assessed the agronomic carbon footprint (up to farm gate) and modelled the carbon sequestration of a range of coffee agroforestry systems across 180 farms in Costa Rica and Guatemala.

View Article and Find Full Text PDF

Anterior pituitary gland volume mediates associations between adrenarche and changes in transdiagnostic symptoms in youth.

Dev Cogn Neurosci

January 2025

Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.

The pituitary gland (PG) plays a central role in the production and secretion of pubertal hormones, with documented links to the increase in mental health symptoms during adolescence. Although literature has largely focused on examining whole PG volume, recent findings have demonstrated associations among pubertal hormone levels, including dehydroepiandrosterone (DHEA), PG subregions, and mental health symptoms during adolescence. Despite the anterior PG's role in DHEA production, studies have not yet examined potential links with transdiagnostic symptomology (i.

View Article and Find Full Text PDF

Background: Manual extraction of real-world clinical data for research can be time-consuming and prone to error. We assessed the feasibility of using natural language processing (NLP), an AI technique, to automate data extraction for patients with advanced lung cancer (aLC). We assessed the external validity of our NLP-extracted data by comparing our findings to those reported in the literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!