Objective: To investigate the molecular function of splicing factor SRSF6 in colorectal cancer (CRC) progression and discover candidate chemicals for cancer therapy through targeting SRSF6.

Design: We performed comprehensive analysis for the expression of SRSF6 in 311 CRC samples, The Cancer Genome Atlas and Gene Expression Omnibus (GEO) database. Functional analysis of SRSF6 in CRC was performed and . SRSF6-regulated alternative splicing (AS) and its binding motif were identified by next-generation RNA-sequencing and RNA immunoprecipitation sequencing (RIP-seq), which was validated by gel shift and minigene reporter assay. ZO-1 exon23 AS was investigated to mediate the function of SRSF6 and . Based on the analysis of domain-specific role, SRSF6-targeted inhibitor was discovered by virtual screening in 4855 FDA-approved drugs and its antitumour effects were evaluated and .

Results: SRSF6 was frequently upregulated in CRC samples and associated with poor prognosis, which promoted proliferation and metastasis and . We identified SRSF6-regulated AS targets and discovered the SRSF6 binding motif. Particularly, SRSF6 regulates ZO-1 aberrant splicing to function as an oncogene by binding directly to its motif in the exon23. Based on the result that SRSF6 RRM2 domain plays key roles in regulating AS and biological function, indacaterol, a β2-adrenergic receptor agonist approved for chronic obstructive pulmonary disease treatment, is identified as the inhibitor of SRSF6 to suppress CRC tumourigenicity.

Conclusions: SRSF6 functions the important roles in mediating CRC progression through regulating AS, and indacaterol is repositioned as an antitumour drug through targeting SRSF6.

Accession Numbers: The accession numbers for sequencing data are SRP111763 and SRP111797.

Download full-text PDF

Source
http://dx.doi.org/10.1136/gutjnl-2017-314983DOI Listing

Publication Analysis

Top Keywords

srsf6
10
srsf6-regulated alternative
8
alternative splicing
8
colorectal cancer
8
crc progression
8
crc samples
8
binding motif
8
crc
6
splicing
4
splicing promotes
4

Similar Publications

Renal fibrosis (RF) is a crucial pathological factor in the progression of chronic kidney disease (CKD) to end-stage renal failure, and accurate and noninvasive assays to monitor the progression of renal fibrosis are needed. Circular RNAs (circRNAs) are noncoding RNAs that can be used as diagnostic biomarkers and therapeutic targets for human diseases. In this study, we analysed the expression of hsa_circ_0008925 in human urinary renal tubular cells and investigated its role in renal fibrosis.

View Article and Find Full Text PDF

Background: It has been demonstrated that nintedanib can inhibit the proliferation of gastric cancer cells, but the specific mechanism of action is unclear.

Objective: Investigating the changes of key factors involved in gene transcription and post-transcriptional regulation during the process of treating gastric cancer with nintedanib.

Methods: In this study, we performed transcriptome sequencing on gastric cancer cell groups treated with nintedanib and control groups.

View Article and Find Full Text PDF

The morbidity and mortality rates of prostate cancer (PCa) are high among elderly men worldwide. Several factors, such as heredity, obesity, and environment are associated with the occurrence of PCa. Cigarette smoking, which is also an important factor in the development of PCa, can lead to genetic alterations and consequently promote PCa development.

View Article and Find Full Text PDF

Despite novel therapeutic strategies, advanced-stage prostate cancer (PCa) remains highly lethal, pointing out the urgent need for effective therapeutic strategies. While dysregulation of the splicing process is considered a cancer hallmark, the role of certain splicing factors remains unknown in PCa. This study focuses on characterizing the levels and role of SRSF6 in this disease.

View Article and Find Full Text PDF

Objective: MSI has a better prognosis than MSS in colorectal cancer patients, and the main objective of this study was to screen for differentially expressed molecules between MSI and MSS primary colorectal cancers using bioinformatics.

Material And Methods: Two gene expression datasets (GSE13294 and GSE13067) were downloaded from GEO, and differential expressed genes (DEGs) were analyzed using GEO2R. Gene Ontology, Kyoto Encyclopedia of Genomes, and Gene Set Enrichment Analysis were conducted using the DEGs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!