Similar Active Sites and Mechanisms Do Not Lead to Cross-Promiscuity in Organophosphate Hydrolysis: Implications for Biotherapeutic Engineering.

J Am Chem Soc

Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden.

Published: December 2017

Organophosphate hydrolases are proficient catalysts of the breakdown of neurotoxic organophosphates and have great potential as both biotherapeutics for treating acute organophosphate toxicity and as bioremediation agents. However, proficient organophosphatases such as serum paraoxonase 1 (PON1) and the organophosphate-hydrolyzing lactonase SsoPox are unable to hydrolyze bulkyorganophosphates with challenging leaving groups such as diisopropyl fluorophosphate (DFP) or venomous agent X, creating a major challenge for enzyme design. Curiously, despite their mutually exclusive substrate specificities, PON1 and diisopropyl fluorophosphatase (DFPase) have essentially identical active sites and tertiary structures. In the present work, we use empirical valence bond simulations to probe the catalytic mechanism of DFPase as well as temperature, pH, and mutational effects, demonstrating that DFPase and PON1 also likely utilize identical catalytic mechanisms to hydrolyze their respective substrates. However, detailed examination of both static structures and dynamical simulations demonstrates subtle but significant differences in the electrostatic properties and solvent penetration of the two active sites and, most critically, the role of residues that make no direct contact with either substrate in acting as "specificity switches" between the two enzymes. Specifically, we demonstrate that key residues that are structurally and functionally critical for the paraoxonase activity of PON1 prevent it from being able to hydrolyze DFP with its fluoride leaving group. These insights expand our understanding of the drivers of the evolution of divergent substrate specificity in enzymes with identical active sites and guide the future design of organophosphate hydrolases that hydrolyze compounds with challenging leaving groups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724027PMC
http://dx.doi.org/10.1021/jacs.7b09384DOI Listing

Publication Analysis

Top Keywords

active sites
16
organophosphate hydrolases
8
challenging leaving
8
leaving groups
8
identical active
8
active
4
sites mechanisms
4
mechanisms lead
4
lead cross-promiscuity
4
organophosphate
4

Similar Publications

The U.S. Department of Veterans Affairs (VA) developed evidence-informed mental health mobile applications (MH apps) to supplement treatment and serve as self-care resources for veterans.

View Article and Find Full Text PDF

exon 14 ex14) skipping occurs in 3-4% of non-small-cell lung cancer (NSCLC) cases. Low frequency of this alteration necessitated open-label, single-arm trials to investigate MET inhibitors. Since broad MET biomarker testing was only recently introduced in many countries, there is a lack of historical real-world data from patients with ex14 skipping NSCLC receiving conventional therapies.

View Article and Find Full Text PDF

Layered VO·6HO is a promising candidate for aqueous zinc batteries (AZBs) but with moderate electrochemical performances. Herein, the charge storage properties of VO·6HO are markedly improved by building up the heterointerface on its surface using amorphous molybdenum trioxide as the heteromaterial. The amorphous molybdenum trioxide functioning as the proton reservoir enables the proton-involved electrochemical reactions and induces the formation of a built-in electric field along the [001] orientation at the heterointerface constructed by the (001) plane of VO·6HO, which could provide new diffusion pathways and extra sites for ion storage.

View Article and Find Full Text PDF

Enzymes of the enolase superfamily (ENS) are mechanistically diverse, yet share a common partial reaction, i.e., the metal-assisted, Bro̷nsted base-catalyzed abstraction of the α-proton from a carboxylate substrate to form an enol(ate) intermediate.

View Article and Find Full Text PDF

Allosteric regulation is a powerful mechanism for controlling the efficiency of enzymes. Deciphering the evolutionary mechanisms by which allosteric properties have been acquired in enzymes is of fundamental importance. We used the malate (MalDH) and lactate deydrogenases (LDHs) superfamily as model to elucidate this phenomenon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!