The aim of the present study was to identify differential pathways in uterine leiomyomata (UL) using a novel method based on protein-protein interaction networks and pathway analysis. The pathway networks were constructed by examining the intersections of the Reactome database and the Search Tool for the Retrieval of Interacting Genes/proteins (STRING) protein-protein interaction (PPI) networks. The Objective network was defined as the differential expressed genes (DEGs) associated with the interactions identified by STRING. Topological centrality (degree) analysis was performed for the Objective network to explore the hub genes and hub networks. Subsequent to isolating the intersections between the Pathway and Objective networks, randomization tests were conducted to identify the differential pathways. There were 559,598 interactions in the Pathway networks. A total of 657 genes with 3,835 interactions were mapped in the Objective network, which included 20 hub genes. It was identified that 358 pathways demonstrated interaction with the Objective network, such as Signal Transduction, Immune System and Signaling by G-protein-coupled receptor (GPCR). By accessing the randomization tests, P-values of these pathways were close to 0, which indicated that they were significantly different. The present study successfully identified differential pathways (such as signal transduction, immune system and signaling by GPCR) in UL, which may be potential biomarkers in the detection and treatment of UL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5661392 | PMC |
http://dx.doi.org/10.3892/ol.2017.6928 | DOI Listing |
J Tissue Eng
January 2025
Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
Rotator cuff tendon injuries often lead to shoulder pain and dysfunction. Traditional treatments such as surgery and physical therapy can provide temporary relief, but it is difficult to achieve complete healing of the tendon, mainly because of the limited repair capacity of the tendon cells. Therefore, it is particularly urgent to explore new treatment methods.
View Article and Find Full Text PDFFront Physiol
January 2025
Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
Introduction: Chronic fetal hypoxia is commonly associated with fetal growth restriction and can predispose to respiratory disease at birth and in later life. Antenatal antioxidant treatment has been investigated to overcome the effects of oxidative stress to improve respiratory outcomes. We aimed to determine if the effects of chronic fetal hypoxia and antenatal antioxidant administration persist in the lung in early adulthood.
View Article and Find Full Text PDFFront Bioinform
January 2025
Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan, China.
The precise role of lncRNAs in skeletal muscle development and atrophy remain elusive. We conducted a bioinformatic analysis of 26 GEO datasets from mouse studies, encompassing embryonic development, postnatal growth, regeneration, cell proliferation, and differentiation, using R and relevant packages (limma et al.).
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Sichuan Provincial Key Laboratory of Traditional Chinese Medicine Regulation of Metabolic Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
Sertoli cells (SCs), as the somatic cells in the testis of male mammals, play a crucial role in the close association with germ cells. The blood-testicular barrier (BTB), established by their tight junctions, provides immune protection to germ cells, leading to their characterization as "sentinel" cells. Moreover, the physiological process of testicular development and spermatogenesis in male animals is intricately tied to the secretory activities of SCs.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States.
Foxp3-expressing CD4 regulatory T (Treg) cells play a crucial role in suppressing autoimmunity, tolerating food antigens and commensal microbiota, and maintaining tissue integrity. These multifaceted functions are guided by environmental cues through interconnected signaling pathways. Traditionally, Treg fate and function were believed to be statically determined by the forkhead box protein Foxp3 that directly binds to DNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!