Loss of 14-3-3σ expression through DNA methylation has been associated with carcinogenesis and the prognosis for various cancer types. Detection of methylation of the gene in serum may be useful for diagnostic utility. The present study aimed to investigate the correlation between 14-3-3σ methylation level in 36 paired tumor tissues of non-small cell lung cancer (NSCLC) and matched serum using methylation-specific polymerase chain reaction. The prognostic significance of 14-3-3σ expression in 167 NSCLC was also evaluated using immunohistochemistry. Methylation of the 14-3-3σ gene was identified in all samples. The methylation level in the serum (mean 87.7%, range 64.6-100%) was higher compared with tumor (mean 46.7%, range 25.3-56.3%). However, no significant correlation between methylation levels in tissues and serums was observed (Spearman's correlation, -0.036; P=0.837). In the 167 tumor tissues, the majority of the cases (83.8%) exhibited negative expression. Adenocarcinoma is more likely to exhibit negative expression (91.4%) compared with squamous cell carcinoma (70.2%). No significant difference was identified in the overall survival according to 14-3-3σ expression status and 14-3-3σ expression did not demonstrated independent prognostic significance. In conclusion, NSCLC harbors certain levels of 14-3-3σ methylation in the tumor and the sera of patients. The clinical value of serum 14-3-3σ methylation should be further elucidated. Immunohistochemical expression 14-3-3σ protein has limited value on prognostic significance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662907 | PMC |
http://dx.doi.org/10.3892/ol.2017.6881 | DOI Listing |
Microb Cell Fact
January 2025
Human Microbiology Institute, New York, NY, 10014, USA.
Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.
View Article and Find Full Text PDFJ Transl Med
January 2025
Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.
View Article and Find Full Text PDFBMC Pharmacol Toxicol
January 2025
Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.
View Article and Find Full Text PDFBreast Cancer Res
January 2025
Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
Background: Epidemiological studies associate an increase in breast cancer risk, particularly triple-negative breast cancer (TNBC), with lack of breastfeeding. This is more prevalent in African American women, with significantly lower rate of breastfeeding compared to Caucasian women. Prolonged breastfeeding leads to gradual involution (GI), whereas short-term or lack of breastfeeding leads to abrupt involution (AI) of the breast.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.
Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!