Statistical comparison of leaching behavior of incineration bottom ash using seawater and deionized water: Significant findings based on several leaching methods.

J Hazard Mater

Residue and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore; Department of Civil Engineering, 23 College Walk, Monash University, Victoria 3800, Australia.

Published: February 2018

Bottom ashes generated from municipal solid waste incineration have gained increasing popularity as alternative construction materials, however, they contains elevated heavy metals posing a challenge for its free usage. Different leaching methods are developed to quantify leaching potential of incineration bottom ashes meanwhile guide its environmentally friendly application. Yet, there are diverse IBA applications while the in situ environment is always complicated, challenging its legislation. In this study, leaching tests were conveyed using batch and column leaching methods with seawater as opposed to deionized water, to unveil the metal leaching potential of IBA subjected to salty environment, which is commonly encountered when using IBA in land reclamation yet not well understood. Statistical analysis for different leaching methods suggested disparate performance between seawater and deionized water primarily ascribed to ionic strength. Impacts of leachant are metal-specific dependent on leaching methods and have a function of intrinsic characteristics of incineration bottom ashes. Leaching performances were further compared on additional perspectives, e.g. leaching approach and liquid to solid ratio, indicating sophisticated leaching potentials dominated by combined geochemistry. It is necessary to develop application-oriented leaching methods with corresponding leaching criteria to preclude discriminations between different applications, e.g., terrestrial applications vs. land reclamation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2017.11.004DOI Listing

Publication Analysis

Top Keywords

leaching methods
24
leaching
14
incineration bottom
12
deionized water
12
bottom ashes
12
seawater deionized
8
leaching potential
8
land reclamation
8
methods
6
statistical comparison
4

Similar Publications

Catheter-associated urinary tract infection (CAUTI) induced by rapid bacterial colonization and biofilm formation on urinary catheters is a key issue that urgently needs to be addressed. To prevent CAUTI, many contact-killing, non-leaching coatings have been developed for the surfaces of silicone catheters. However, due to the chemical inertness of the silicone substrate, most current coatings lack adhesion and are unstable under external forces.

View Article and Find Full Text PDF

Gold(III) Ions Sorption on Amberlite XAD-16 Impregnated with TBP After Leaching Smart Card Chips.

Molecules

January 2025

Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031 Lublin, Poland.

Owing to the intensive development of electrical and electronic equipment, there is an increasing demand for precious metals, which are often used for its production. Due to their scarce supply, it is important to recover them from secondary sources. A promising way to recover precious metals are impregnated resins.

View Article and Find Full Text PDF

Recovery of Nd and Dy from E-Waste Using Adsorbents from Spent Tyre Rubbers: Batch and Column Dynamic Assays.

Molecules

December 2024

LAQV/REQUIMTE, Associated Laboratory for Green Chemistry, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.

This paper investigates the use of spent tyre rubber as a precursor for synthesising adsorbents to recover rare earth elements. Through pyrolysis and CO activation, tyre rubber is converted into porous carbonaceous materials with surface properties suited for rare earth element adsorption. The study also examines the efficiency of leaching rare earth elements from NdFeB magnets using optimised acid leaching methods, providing insights into recovery processes.

View Article and Find Full Text PDF

As a large-volume industrial solid waste generated during the production of wet-process phosphoric acid, the primary disposal method for phosphogypsum (PG) currently involves centralized stockpiling, which requires substantial land use. Additionally, PG contains impurities, such as phosphorus, fluorine, and alkali metals, that may pose potential pollution risks to the surrounding environment. However, the mechanisms governing the co-release of phosphorus and fluorine impurities alongside valuable metal cations during leaching remain unclear, posing challenges to efficient disposal and utilization.

View Article and Find Full Text PDF

Background: Exercise interventions are among the best-known interventions for cancer-related fatigue (CRF). Rural survivors of cancer, however, report specific barriers to engaging in exercise programs and lack overall access to effective programs.

Objective: The purpose of this investigation was to assess the feasibility of a novel telehealth exercise program designed specifically for rural survivors of cancer with CRF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!