Surface Composition and Crystallinity of Coalescing Silver-Gold Nanoparticles.

ACS Nano

Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zürich , Sonneggstrasse 3, CH-8092 Zürich, Switzerland.

Published: November 2017

Bimetallic nanoparticles exhibit catalytic, optical, electronic, and magnetic synergy between their constituent metals. Typically, that synergy is traced to the domain structure and surface characteristics of such particles. Here these characteristics of coalescing Ag-Au nanoparticles of various initial sizes and morphologies (segregated or alloys) are investigated by atomistic molecular dynamics (MD) at different temperatures. Silver atoms exhibit increased mobility over Au and occupy gradually the surface of the coalesced (or sintered) bimetallic particle, consistent with scanning electron microscopy and selective O chemisorption experiments for heterogeneous catalysis of ethylene oxidation. The characteristic sintering time of equally sized Ag-Au nanoparticles is similar to that of pure Au but shorter than that of Ag nanoparticles. When the latter coalesce with substantially bigger Au ones, a patchy Ag layer is formed at the Au particle surface. However, when Ag nanoparticles are bigger, then Au is rather embedded into Ag, consistent with microscopy data. Most notably, X-ray diffraction (XRD) patterns of Ag-Au nanoparticles are obtained by MD, distinguishing segregated from alloyed ones. The latter exhibit a weaker XRD reflection of the (200) crystalline plane and, most distinctly, form smaller crystal size (highly polycrystalline) than coalescing pure and segregated Ag and Au nanoparticles, quantitatively explaining the structure of flame-made Ag-Au nanoparticles for biomaterial applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.7b06727DOI Listing

Publication Analysis

Top Keywords

ag-au nanoparticles
16
nanoparticles
9
surface
4
surface composition
4
composition crystallinity
4
crystallinity coalescing
4
coalescing silver-gold
4
silver-gold nanoparticles
4
nanoparticles bimetallic
4
bimetallic nanoparticles
4

Similar Publications

Porous Nanoframe Based Plasmonic Structure With High-Density Hotspots for the Quantitative Detection of Gaseous Benzaldehyde.

Small

January 2025

Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China.

Owing to its high sensitivity, surface-enhanced Raman scattering (SERS) has immense potential for the identification of lung cancer from the variation in volatile biomarkers in the exhaled gas. However, two prevailing factors limit the application of SERS: 1) the adsorption of target molecules into SERS hotspots and 2) the detection specificity in multiple interference environments. To improve the density of the SERS hotspots, 3D Au@Ag-Au particles are prepared in a porous nanoframes (PPFs) based plasmonic structure, which facilitated a richer local electromagnetic field distribution among the Au nanocubic (NC) cores, Au-Ag porous nanoframes, and Au nanoparticles, thereby promoting the adsorption probability of gaseous aldehydes into the hotspots.

View Article and Find Full Text PDF

Energy-level rich nanorings hybridizing Ag, Au and AgCl as high-performance SERS substrate for numerous molecules.

Talanta

January 2025

MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, China. Electronic address:

The current surface-enhanced Raman scattering (SERS) substrates typically feature a single energy level, posing challenges in coordinating electromagnetic enhancement (EM) and chemical enhancement (CM), thereby limiting the sensitive detection of numerous crucial target molecules. In this study, novel aggregated nanorings (a-NRs) hybridizing Ag, Au and AgCl are constructed as SERS substrates. On one hand, the obtained a-NRs exhibit robust localized surface plasmon resonance absorption, whose wavelength can be tuned to match three commonly used laser wavelengths (532, 633 and 785 nm) to gain strong EM effect.

View Article and Find Full Text PDF

Topotactic Transformation in FeO Induces Spontaneous Growth of Compositionally Diverse Nanostructures.

Angew Chem Int Ed Engl

December 2024

Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China.

Topotactic transformation is an emerging strategy for synthesizing materials with exotic functional properties. In this report, instead of producing new crystals with related structures, we exploited the topotactic transformation phenomenon to spontaneously produce compositionally diverse nanostructures on the transforming substrate. The surface of magnetite nanoparticles (FeO NPs) is topotactically transformed into maghemite (γ-FeO).

View Article and Find Full Text PDF

Tunable Chiroptical Activity in Branched Ag@Au Nanoparticles with Molecular Chirality and Geometric Chirality.

Small

December 2024

State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.

Chiral plasmonic nanomaterials have attracted significant awareness due to their applications in chiral catalysis, biosensing, photonics, and separation. Constructing plasmonic core-shell nanomaterials with geometric chirality and desirable optical chirality is a crucial yet challenging task for extending the range of chiral plasmonic nanomaterials. Here, a two-step method is reported for the synthesis of Gold (Au) branches wrapped silver (Ag) nanocubes (L/DBAg@Au) with strong and tunable circular dichroism (CD) signals under the regulation of L/D-cysteine (L/D-Cys).

View Article and Find Full Text PDF

Electric field-induced alignment of Ag/Au nanowires for ultrasensitive in situ detection of Interleukin-6.

Biosens Bioelectron

March 2025

School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China; Shandong Institute of Mechanical Design and Research, Jinan, 250353, China. Electronic address:

Interleukin-6 (IL-6) is a key parameter and critical role in cancer progression. However, for detection of IL-6 in colorectal cancer diagnosis, developing a sensitive biosensor is necessary and very important. In this paper, to enhance the sensitivity of IL-6 electrochemical biosensor, the electric field was used to orient arrangement of silver nanowires (AgNWs) to be free-standing AgNWs electrode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!