The modulation of conjugated polyelectrolyte fluorescence response by nonionic surfactants is dependent on the structures of the surfactant and polymer, polymer average molecular weight, and polyelectrolyte-surfactant interactions. In this paper, we study the effect of nonionic n-alkyl polyoxyethylene surfactants (CE) with different alkyl chain lengths (CE with i = 6, 8, 10, and 12) and number of oxyethylene groups (CE with j = 5, 7, and 9) on the photophysics and ionic conductivity of poly{[9,9-bis(6'-N,N,N-trimethylammonium)-hexyl]-2,7-fluorene-alt-1,4-phenylene}bromide (HTMA-PFP) in dimethyl sulfoxide-water 4% (v/v). Molecular dynamics simulations show that HTMA-PFP chains tend to approach as the simulation evolves. However, the minimum distance between the polymer centers of mass increases upon addition of the surfactant and grows with both the surfactant alkyl chain length and the number of oxyethylene groups, although there are no specific polymer-surfactant interactions. A significant increase in the polymer emission intensity has been observed at surfactant concentrations around their critical micelle concentrations (cmcs), which is attributed to polymer aggregate disruption. However, an increase in the solution conductivity for concentrations above the CE cmc has only been observed for the HTMA-PFP/CE system. The enhancement of fluorescence emission intensity and conductivity upon surfactant addition increases with polymer average molecular weights and seems to be controlled by the polymer-surfactant proximity, which is maximum for CE and CE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.7b02818 | DOI Listing |
Polymers (Basel)
December 2024
Research Laboratory "New Polymeric Materials", Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia.
Anionic thermo- and pH-responsive copolymers were synthesized by photoiniferter reversible addition-fragmentation chain transfer polymerization (PI-RAFT). The thermo-responsive properties were provided by oligo(ethylene glycol)-based macromonomer units containing hydrophilic and hydrophobic moieties. The pH-responsive properties were enabled by the addition of 5-20 mol% of strong (2-acrylamido-2-methylpropanesulfonic) and weak (methacrylic) acids.
View Article and Find Full Text PDFBiomolecules
December 2024
Faculty of Chemical and Pharmaceutical Technologies and Biomedical Preparations, D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow 125047, Russia.
The objective of this study was to compare the properties of core-shell nanoparticles with a PLGA core and shells composed of different types of polymers, focusing on their structural integrity. The core PLGA nanoparticles were prepared either through a high-pressure homogenization-solvent evaporation technique or nanoprecipitation, using poloxamer 188 (P188), a copolymer of divinyl ether with maleic anhydride (DIVEMA), and human serum albumin (HSA) as the shell-forming polymers. The shells were formed through adsorption, interfacial embedding, or conjugation.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, Groningen, 9747 AG, The Netherlands.
Conjugated polyelectrolytes (CPEs), materials that are defined by a -conjugated backbone and charged ionic functional groups, are frequently prepared through direct polymerization of charged monomer species in aqueous media. This route is, however, often accompanied by labor-intensive work-up procedures, low yields, and ultimately results in materials that are difficult to characterize. To overcome these inconveniences, in this work protection chemistry is applied on sulfonate-functionalized fluorene monomers that are polymerized under standard Suzuki polycondensation conditions to obtain protected donor-acceptor copolymers.
View Article and Find Full Text PDFNat Commun
January 2025
Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, China.
Wireless energy-responsive systems provide a foundational platform for powering and operating intelligent devices. However, current electronic systems relying on complex components limit their effective deployment in ambient environment and seamless integration of energy harvesting, storage, sensing, and communication. Here, we disclose a coupling effect of electromagnetic wave absorption and moist-enabled generation on carrier transportation and energy interaction regulated by ionic diode effect.
View Article and Find Full Text PDFLangmuir
January 2025
State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China.
The protein carrier and encapsulation system based on polyelectrolytes plays crucial roles in drug research and development. Traditional methods such as isothermal titration calorimetry and molecular dynamics simulation have illuminated parts of this complex relationship. However, they fall short of capturing the full picture of the interaction during the carrier's fabrication and protein loading dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!