Transparent Perovskite Light-Emitting Touch-Responsive Device.

ACS Nano

Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, California 90095, United States.

Published: November 2017

A light-emitting touch-responsive device (LETD) for instantaneous visualization of pressure mapping is reported. The LETD integrates an organometal halide perovskite polymer composite emissive layer and a flexible silver nanowire polyurethane composite transparent electrode. The composite emissive layer contains methylammonium lead bromide nanocrystals uniformly dispersed in a poly(ethylene oxide) (PEO) matrix and emits an intense green luminescence that peaks at 529 nm. The PEO matrix promotes the formation of small perovskite grains (∼20 nm) and a pinhole-free composite film with surface roughness of only 2.96 nm. The composite transparent electrode is separated from the emissive layer with a 100 μm thick spacer. When a local pressure is applied, a Schottky contact is formed instantaneously between the metal and the emissive layer, and electroluminescence is produced at voltages as low as 2.5 V and reaches 1030 cd/m at 6 V. The transparent LETD has approximately 68% transparency. It can be bent to a 6 mm radius when polyethylene terephthalate is used as the substrate. The perovskite LETD has fast response and can be pixelated to offer potential applications in robotics, motion detection, fingerprint devices, and interactive wallpapers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.7b05935DOI Listing

Publication Analysis

Top Keywords

emissive layer
16
light-emitting touch-responsive
8
touch-responsive device
8
composite emissive
8
composite transparent
8
transparent electrode
8
peo matrix
8
composite
5
transparent
4
transparent perovskite
4

Similar Publications

Contrasting Responses of Smoke Dispersion and Fire Emissions to Aerosol-Radiation Interaction during the Largest Australian Wildfires in 2019-2020.

Environ Sci Technol

January 2025

Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China.

The record-breaking 2019-2020 Australian wildfires have been primarily linked to climate change and its internal variability. However, the meteorological feedback mechanisms affecting smoke dispersion and wildfire emissions on a synoptic scale remain unclear. This study focused on the largest wildfires occurring between December 25, 2019 and January 10, 2020, under the enhanced subtropical high, when the double peak in wildfire evolution was favored by sustained low humidity and two synchronous increases in temperature and wind.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Korea University, Sejong, Sejong, Korea, Republic of (South).

Background: Amyloid-β accumulation is a pivotal factor in Alzheimer's disease (AD) progression. As treatment for AD has not been successful yet, the most effective approach lies in early diagnosis and the subsequent delay of disease progression. Hence, this study introduces a deep learning model to predict amyloid-β accumulation in the brain.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom.

Background: Frontotemporal dementia (FTD) and Progressive Supranuclear Palsy (PSP) have distinct molecular pathologies, with Tau and TDP43 aggregation, and distinct patterns of regional brain atrophy. However, they share the synaptotoxicity of protein aggregation, and neurotransmitter loss (including GABA), which contribute to clinical and neurophysiological similarities. Defining the relationships between synaptic loss, network physiology and cognition builds bridges between preclinical and clinical studies, and facilitates early phase trials.

View Article and Find Full Text PDF

Background: Brain deposits of amyloid-β (Aβ), one of the hallmark pathologies of Alzheimer disease (AD), are consistently present in people with Down syndrome (DS) after the age of 30 years. Positron emission tomography (PET) radioligands like [3H]Pittsburgh Compound-B (PiB) allow for visualizing Aβ accumulation in living people. In DS, the earliest and strongest PiB-PET retention is in the striatum, differing from late-onset AD.

View Article and Find Full Text PDF

Magnetic insulation of electrons prevents losses and can be applied to generating radiation or electron sources for high current and high power applications. Ion emission from the anode may degrade magnetic insulation. We develop equilibrium theory, self-consistently coupling magnetically insulated electron flow with free-flowing injected ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!