The previously described optimized binary compressive detection (OB-CD) strategy enables fast hyperspectral Raman (and fluorescence) spectroscopic analysis of systems containing two or more chemical components. However, each OB-CD filter collects only a fraction of the scattered photons and the remainder of the photons are lost. Here, we present a refinement of OB-CD, the OB-CD2 strategy, in which all of the collected Raman photons are detected using a pair of complementary binary optical filters that direct photons of different colors to two photon counting detectors. The OB-CD2 filters are generated using a new optimization algorithm described in this work and implemented using a holographic volume diffraction grating and a digital micromirror device (DMD) whose mirrors are programed to selectively direct photons of different colors either to one or the other photon-counting detector. When applied to pairs of pure liquids or two-component solid powder mixtures, the resulting OB-CD2 strategy is shown to more accurately estimate Raman scattering rates of each chemical component, when compared to the original OB-CD, thus facilitating chemical classification at speeds as fast as 3 μs per measurement and the collection of Raman images in under a second.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0003702817732324DOI Listing

Publication Analysis

Top Keywords

ob-cd2 strategy
8
direct photons
8
photons colors
8
raman
5
photons
5
binary complementary
4
complementary filters
4
filters compressive
4
compressive raman
4
raman spectroscopy
4

Similar Publications

The previously described optimized binary compressive detection (OB-CD) strategy enables fast hyperspectral Raman (and fluorescence) spectroscopic analysis of systems containing two or more chemical components. However, each OB-CD filter collects only a fraction of the scattered photons and the remainder of the photons are lost. Here, we present a refinement of OB-CD, the OB-CD2 strategy, in which all of the collected Raman photons are detected using a pair of complementary binary optical filters that direct photons of different colors to two photon counting detectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!