In this paper, the amorphous CeAlCuCo (atom %) alloy was in situ prepared by nanocalorimetry. The high cooling and heating rates accessible with this technique facilitate the suppression of crystallization on cooling and the identification of homogeneous nucleation. Different from the generally accepted notion that metallic glasses form just by avoiding crystallization, the role of nucleation and growth in the crystallization behavior of amorphous alloys is specified, allowing an access to the ideal metallic glass free of nuclei. Local atomic configurations are fundamentally significant to unravel the glass forming ability (GFA) and phase transitions in metallic glasses. For this reason, isothermal annealing near T from 0.001 s to 25,000 s following quenching becomes the strategy to tune local atomic configurations and facilitate an amorphous alloy, a mixed glassy-nanocrystalline state, and a crystalline sample successively. On the basis of the evolution of crystallization enthalpy and overall latent heat on reheating, we quantify the underlying mechanism for the isothermal nucleation and crystallization of amorphous alloys. With Johnson-Mehl-Avrami method, it is demonstrated that the coexistence of homogeneous and heterogeneous nucleation contributes to the isothermal crystallization of glass. Heterogeneous rather than homogeneous nucleation dominates the isothermal crystallization of the undercooled liquid. For the mixed glassy-nanocrystalline structure, an extraordinary kinetic stability of the residual glass is validated, which is ascribed to the denser packed interface between amorphous phase and ordered nanocrystals. Tailoring the amorphous structure by nanocalorimetry permits new insights into unraveling GFA and the mechanism that correlates local atomic configurations and phase transitions in metallic glasses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.7b03952 | DOI Listing |
J Phys Chem B
January 2025
Department of Chemical Engineering, IIT Gandhinagar, Gandhinagar, Gujarat 382055, India.
We compare the structures of polymer globules, composed of flexible polymer chains, with liquid droplets made of nonbonded monomers of the same polymer in poor solvents. This comparison is performed in three different poor solvents, with and without the addition of cosolvents. Molecular dynamics simulations are used to analyze the properties of the polymer globules, while semigrand canonical Monte Carlo simulations are used to form metastable liquid droplets of nonbonded monomers through homogeneous nucleation in the same solvents.
View Article and Find Full Text PDFRecent Pat Nanotechnol
January 2025
Ansteel Beijing Research Institute Co., Ltd., Beijing 102211, China.
Background: Sodium vanadium fluorophosphate is a sodium ion superconductor material with high sodium ion mobility and excellent cyclic stability, making it a promising cathode material for sodium-ion batteries. However, most of the literature and patents report preparation through traditional methods, which involve complex processes, large particle sizes, and low electronic conductivity, thereby limiting development progress.
Objective: Aiming at the limitation of high cost and poor performance of vanadium sodium fluorophosphate cathode material, the low temperature and high-efficiency nano preparation technology was developed.
Materials (Basel)
December 2024
School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China.
In this study, molecular dynamics (MD) simulations were employed to compare the effects of different solidification conditions on the solidification behaviour, stress distribution, and degree of crystallization of iron. The results indicate significant differences in nucleation and microstructural evolution between the two solidification methods. In the homogeneous temperature field, the solidification of iron is characterized by instantaneous nucleation.
View Article and Find Full Text PDFSmall Methods
January 2025
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
Anode-less sodium metal batteries (SMBs) suffer from the formation of Na dendrites and inactive Na on an anode substrate though showing advantages of high energy densities and low costs. Herein, N,O co-doped carbon spheres (NOCS), which are synthesized via a scalable polymerization and pyrolysis method, are employed as a thin and stable sodiophillic nucleation layer on the Cu foil. Combined with electrochemical measurements, Na deposition morphology observations and density functional theory calculations, it is revealed that the introduced N and O heteroatoms can greatly enhance the adsorption of Na on the carbon substrate and reduce the nucleation overpotential, thus forming sufficient seeding sites and guiding homogeneous Na deposition.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517619, India.
Although impurities are unavoidable in real-world and experimental systems, most numerical studies on nucleation focus on pure (impurity-free) systems. As a result, the role of impurities in phase transitions remains poorly understood, especially for systems with complex free energy landscapes featuring one or more intermediate metastable phases. In this study, we employed Monte Carlo simulations to investigate the effects of static impurities (quenched disorder) of varying length scales and surface morphologies on the crystal nucleation mechanism and kinetics in the Gaussian core model system-a representative model for soft colloidal systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!