Most binary superlattices created using DNA functionalization rely on particle size differences to achieve compositional order and structural diversity. Here we study two-dimensional (2D) assembly of DNA-functionalized micron-sized particles (DFPs), and employ a strategy that leverages the tunable disparity in interparticle interactions, and thus enthalpic driving forces, to open new avenues for design of binary superlattices that do not rely on the ability to tune particle size (i.e., entropic driving forces). Our strategy employs tailored blends of complementary strands of ssDNA to control interparticle interactions between micron-sized silica particles in a binary mixture to create compositionally diverse 2D lattices. We show that the particle arrangement can be further controlled by changing the stoichiometry of the binary mixture in certain cases. With this approach, we demonstrate the ability to program the particle assembly into square, pentagonal, and hexagonal lattices. In addition, different particle types can be compositionally ordered in square checkerboard and hexagonal-alternating string, honeycomb, and Kagome arrangements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.7b02835 | DOI Listing |
J Am Chem Soc
December 2024
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
Soft matters, particularly giant molecular self-assembly, have successfully replicated complex structures previously exclusive to metal alloys. These superlattices are constructed from mesoatoms─supramolecular spherical motifs of aggregated molecules, and the formation of superlattices critically depends on the volume distributions of these mesoatoms. Herein, we introduce two general methods to control volume asymmetry (i.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
J Chem Phys
November 2024
F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA.
Non-additive mixing plays a key role in the properties of molecular fluids and solids. In this work, the potential for athermal order-disorder phase transitions is explored in non-additive binary colloidal nanoparticles that form substitutionally ordered compounds, namely, for equimolar mixtures of octahedra + spheres, which form a CsCl lattice compound, and cubes + spheres, which form a NaCl crystal. Monte Carlo simulations that target phase coexistence conditions were used to examine the effect on compound formation of varying degrees of negative non-additivity created by component size asymmetry and by size-tunable indentations in the polyhedra's facets, intended to allow the nestling of neighboring spheres.
View Article and Find Full Text PDFMaterials (Basel)
October 2024
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
C-based XC binary materials and their (XC)/(YC) (X, Y ≡ Si, Ge and Sn) superlattices (SLs) have recently gained considerable interest as valuable alternatives to Si for designing and/or exploiting nanostructured electronic devices (NEDs) in the growing high-power application needs. In commercial NEDs, heat dissipation and thermal management have been and still are crucial issues. The concept of phonon engineering is important for manipulating thermal transport in low-dimensional heterostructures to study their lattice dynamical features.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, 00076, Finland.
Inorganic nanoparticles can be assembled into superlattices with unique optical and magnetic properties arising from collective behavior. Protein cages can be utilized to guide this assembly by encapsulating nanoparticles and promoting their assembly into ordered structures. However, creating ordered multi-component structures with different protein cage types and sizes remains a challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!