Here, we report the developed cyclo olefin polymer (COP) microfluidic chip on a fabricated rotating heater stage that utilizes centrifugation-assisted thermal cycle in a ring-structured microchannel for polymerase chain reaction (PCR). The PCR solution could be driven by thermal convection and continuously exchanged high/low temperatures in a ring structured microchannel without the use of typical syringe pump. More importantly, the flow rate was controlled by the relative gravitational acceleration only. The platform enables amplification within 10 min at 5G and has a detection limit of 70.5 pg/channel DNA concentration (β-actin, 295 bp). The current rotating system is capable of testing four different samples in parallel. The microfluidic chip can be preloaded with the PCR premix solution for on-site utility, and, with all of the features integrated to the system, the test can be conducted without the need for specialized laboratory and trained laboratory staff. In addition, this innovative chemical reaction technique has the potential to be utilized in other micromixing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.7b03107DOI Listing

Publication Analysis

Top Keywords

thermal convection
8
polymerase chain
8
chain reaction
8
microfluidic chip
8
centrifugation-controlled thermal
4
convection application
4
application rapid
4
rapid microfluidic
4
microfluidic polymerase
4
reaction devices
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!