Dynamic covalent bonding-triggered supramolecular gelation derived from tetrahydroxy-bisurea derivatives.

Soft Matter

Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.

Published: November 2017

A new class of bisurea derivatives bearing tetrahydroxy groups have been proven to be non-gelators in water and various organic solvents even under long-term sonication or efficient heating treatment. We found that it is possible to trigger physical gelation behaviour by constructing dynamic covalent bonding. The results show that formation of dynamic covalent bonding between the borate anion and ethanediol substituent in these bisurea derivatives brings about rapid physical gelation at ambient temperature in a mixture of DMSO and water. During dynamic covalent bonding-triggered gelation, the stepgrowth polymerization from the B-O bonds would increase the size of the molecules and reduce the entropy of mixing as well as facilitate ion-dipole interactions in the linear polymeric gelators. They would drive a self-assembly transition and boost the construction of gel networks in coordination with α-tape urea-urea hydrogen bonding. The gelation mechanism was explored by H NMR, FTIR and rheology techniques. Moreover, the resulting gels are transparent and thixotropic, and could be turned into the sol state under CO or water-stimulus. Furthermore, they are stable in the presence of HAuCl and alkali. Therefore, they would afford another new medium for the growth of Au nanocrystals via in situ reduction and a new sensing medium for detecting Hg ions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7sm02013aDOI Listing

Publication Analysis

Top Keywords

dynamic covalent
16
covalent bonding-triggered
8
bisurea derivatives
8
physical gelation
8
covalent bonding
8
gelation
5
dynamic
4
bonding-triggered supramolecular
4
supramolecular gelation
4
gelation derived
4

Similar Publications

Dynamic Covalent Sulfur-Selenium Rich Polymers via Inverse Vulcanization for High Refractive Index, High Transmittance, and UV Shielding Materials.

Macromol Rapid Commun

January 2025

College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Material, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.

Recent advancements in inverse vulcanization have led to the development of sulfur-rich polymers with diverse applications. However, progress is constrained by the harsh high-temperature reaction conditions, limited applicability, and the generation of hazardous HS gas. This study presents an induced IV method utilizing selenium octanoic acid, yielding sulfur-selenium rich polymers with full atom economy, even at a low-temperatures of 100-120 °C.

View Article and Find Full Text PDF

Discovery of a Potent Triazole-Based Reversible Targeted Covalent Inhibitor of Cruzipain.

ACS Med Chem Lett

January 2025

Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven 3000, Belgium.

Cruzipain (CZP) is an essential cysteine protease of , the etiological agent of Chagas disease, and a promising druggable target. To date, no CZP inhibitors have reached clinical use, with research efforts mostly hampered by insufficient potency, limited target selectivity or lack of bioactivity translation from the isolated enzyme to the parasite in cellular environments. In this study, we report the design of , a 1,2,3-triazole-based targeted covalent inhibitor with nanomolar potency (IC = 28 nM) and null inhibition of human cathepsin L.

View Article and Find Full Text PDF

In recent years, the development of biodegradable, cell-adhesive polymeric implants and minimally invasive surgery has significantly advanced healthcare. These materials exhibit multifunctional properties like self-healing, shape-memory, and cell adhesion, which can be achieved through novel chemical approaches. Engineering of such materials and their scalability using a classical polymer network without complex chemical synthesis and modification has been a great challenge, which potentially can be resolved using biobased dynamic covalent chemistry (DCC).

View Article and Find Full Text PDF

Efficient removal of TcO from radioactive effluents while recovering drinking water remains a challenge. Herein, an excellent ReO (a nonradioactive surrogate of TcO ) scavenger is presented through covalently bonding imidazolium poly(ionic liquids) polymers with an ionic porous aromatic framework (iPAF), namely iPAF-P67, following an adsorption-site density-addition strategy. It shows rapid sorption kinetics, high uptake capacity, and exceptional selectivity toward ReO .

View Article and Find Full Text PDF

Mechanism exploration of intestinal mucus penetration of nano-se: Regulated by polysaccharides with different functional groups and molecular weights.

J Control Release

January 2025

State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.

Selenium deficiency associated with a high risk of many diseases remains a global challenge. Owing to the narrow margin between "nutrition-toxicity" doses of selenium, it is imperative to achieve accurate selenium supplement. Nano‑selenium (SeNPs) is a novel form of selenium supplement with low toxicity, but it could be trapped and removed by intestinal mucus, thus limiting its oral delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!