Benzothiazole derivatives are a class of privileged molecules due to their biological activity and pharmaceutical applications. One route to these molecules is via intramolecular cyclization of thioureas to form substituted 2-aminobenzothiazoles, but this often requires harsh conditions or employs expensive metal catalysts. Herein, the copper(II)- and gold(III)-mediated cyclizations of thioureas to substituted 2-aminobenzothiazoles are reported. The single-crystal X-ray structures of the thiourea N-(3-methoxyphenyl)-N'-(pyridin-2-yl)thiourea, CHNOS, and the intermediate metal complexes aquabis[5-methoxy-N-(pyridin-2-yl-κN)-1,3-benzothiazol-2-amine-κN]copper(II) dinitrate, [Cu(CHNOS)(HO)](NO), and bis{2-[(5-methoxy-1,3-benzothiazol-2-yl)amino]pyridin-1-ium} dichloridogold(I) chloride monohydrate, (CHNOS)[AuCl]Cl·HO, are reported. The copper complex exhibits a distorted trigonal-bipyramidal geometry, with direct metal-to-benzothiazole-ligand coordination, while the gold complex is a salt containing the protonated uncoordinated benzothiazole, and offers evidence that metal reduction (in this case, Au to Au) is required for the cyclization to proceed. As such, this study provides further mechanistic insight into the role of the metal cations in these transformations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S205322961701381X | DOI Listing |
Chem Biodivers
January 2025
Al-Azhar University - Assiut Branch, Pharmacology, Assiut, Cairo, EGYPT.
Herein, Schiff base was synthesized via reaction between 2-bromo-4-(trifluoromethoxy)aniline and 2-hydroxybenzaldehyde. The ligand was reacted with Cu(II) salt to obtain complex. The compounds were characterization using various techniques.
View Article and Find Full Text PDFSmall
January 2025
Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, 364002, India.
The present work reports the synthesis, characterization, and excited state photo-physical studies of two copper(II) compounds, 1 & 2, which show interference-free emission with homocysteine (Hcy). Cu(II) complexes offer an orthogonal detection strategy involving fluorescence and electrochemical methods, paving the way for improved point-of-care diagnostics and early cardiovascular diseases intervention. The reduction-induced emission enhancement (RIEE) of Cu complexes facilitates the fluorescence measurement of Hcy at physiological pH.
View Article and Find Full Text PDFJ Trace Elem Med Biol
January 2025
Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India. Electronic address:
[CuL(tmen)] is a sequence of four ternary mononuclear Schiff base copper(II) complexes that are derived from L-valine, suitable 5'-substituted-2'-hydroxyacetophenones (where the substituents are -Cl for L, -Me for L, -OMe for L, and -H for L), and tmen (where tmen-N,N,N',N' tetramethyl ethylenediamine). Without isolating the Schiff base ligand or producing any other intermediate products, all of the complexes were synthesised. These compounds were identified using elemental analysis, molar conductance, UV-Vis, FTIR, EPR, VSM-RT, and CD spectra.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Chemistry, Rabindranath Tagore University, Hojai 782435, Assam, India.
The synthesis of triazoles plays an important role in drug discovery research. 1,2,4-triazoles are considered significant scaffolds among several bioactive heterocycles due to their extensive use in the pharmaceutical and agrochemical sectors. Consequently, the importance of the synthesis of 1,2,4-triazoles a sustainable method has increased.
View Article and Find Full Text PDFBeilstein J Org Chem
January 2025
Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 9, 22100, Como, Italy.
This review reports the achievements in copper(II) triflate-catalyzed processes concerning the multicomponent reactions, applied to the synthesis of acyclic and cyclic compounds. In particular, for the heteropolycyclic systems mechanistic insights were outlined as well as cycloaddition and aza-Diels-Alder reactions were included. These strategies have gained attention due to their highly atom- and step-economy, one-step multi-bond forming, mild reaction conditions, low cost and easy handling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!