Personalized neoantigen vaccines: A new approach to cancer immunotherapy.

Bioorg Med Chem

Neon Therapeutics, Cambridge, MA 02139, USA. Electronic address:

Published: June 2018

Neoantigens arise from somatic mutations that differ from wild-type antigens and are specific to each individual patient, which provide tumor specific targets for developing personalized cancer vaccines. Decades of work has increasingly shown the potential of targeting neoantigens to generate effective clinical responses. Current clinical trials using neoantigen targeting cancer vaccines, including in combination with checkpoint blockade monoclonal antibodies, have demonstrated potent T-cell responses against those neoantigens accompanied by antitumor effects in patients. Personalized neoantigen vaccines represent a potential new class of cancer immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2017.10.021DOI Listing

Publication Analysis

Top Keywords

personalized neoantigen
8
neoantigen vaccines
8
cancer immunotherapy
8
cancer vaccines
8
vaccines
4
vaccines approach
4
cancer
4
approach cancer
4
immunotherapy neoantigens
4
neoantigens somatic
4

Similar Publications

Background: Cancer remains a leading cause of morbidity and mortality worldwide. Traditional treatments like chemotherapy and radiation often result in significant side effects and varied patient outcomes. Immunotherapy has emerged as a promising alternative, harnessing the immune system to target cancer cells.

View Article and Find Full Text PDF

The application of messenger RNA (mRNA) technology in antigen-based immuno-oncology therapies represents a significant advancement in cancer treatment. Cancer vaccines are an effective combinatorial partner to sensitize the host immune system to the tumor and boost the efficacy of immune therapies. Selecting suitable tumor antigens is the key step to devising effective vaccinations and amplifying the immune response.

View Article and Find Full Text PDF

The global trends and distribution in tumor-infiltrating lymphocytes over the past 49 years: bibliometric and visualized analysis.

Front Immunol

January 2025

Beijing Traditional Chinese Medicine Office for Cancer Prevention and Control, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China.

Background: The body of research on tumor-infiltrating lymphocytes (TILs) is expanding rapidly; yet, a comprehensive analysis of related publications has been notably absent.

Objective: This study utilizes bibliometric methodologies to identify emerging research hotspots and to map the distribution of tumor-infiltrating lymphocyte research.

Methods: Literature from the Web of Science database was analyzed and visualized using VOSviewer, CiteSpace, Scimago Graphica, R-bibliometrix, and R packages.

View Article and Find Full Text PDF

Circulating tumor DNA (ctDNA) detection can predict clinical risk in early-stage tumors. However, clinical applications are constrained by the sensitivity of clinically validated ctDNA detection approaches. NeXT Personal is a whole-genome-based, tumor-informed platform that has been analytically validated for ultrasensitive ctDNA detection at 1-3 ppm of ctDNA with 99.

View Article and Find Full Text PDF

In-situ tumor vaccination remains challenging due to difficulties in the exposure and presentation of tumor-associated neoantigens (TANs). In view of the central role of lipid metabolism in cell fate determination and tumor-immune cell communication, here we report a photo-controlled lipid metabolism nanoregulator (PLMN) to achieve robust in-situ adjuvant-free vaccination, which is constructed through hierarchically integrating photothermal-inducible arachidonate 15-lipoxygenase (ALOX15)-expressing plasmids, cypate and FIN56 into cationic liposomes. Near-infrared light (NIR) stimulation triggers on-demand ALOX15 editing and causes excessive accumulation of downstream pro-ferroptosis lipid metabolites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!