Bio-based products from xylan: A review.

Carbohydr Polym

CSIR Material Science and Manufacturing, Polymers and Composites Competence Area, PO Box 1124, Port Elizabeth 6000, South Africa; Department of Chemistry, Faculty of Science, Nelson Mandela University, PO Box 1600, Port Elizabeth 6031, South Africa. Electronic address:

Published: January 2018

Obtaining chemicals and materials in sustainable ways is of growing importance. A potential source of sustainable chemicals and materials is lignocellulosic biomass residues generated as waste from agriculture. Hemicellulose which is a large component in lignocellulosic biomass residues, provides many potential applications such as the generation of chemicals, packaging materials, drug delivery and biomedical applications. This review deals with the various techniques which can be used for the extraction of hemicellulose from biomass residues, purification and some potential applications of the extracted hemicellulose. The methods that have been used to further produce chemicals from extracted hemicellulose as well as their applications are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2017.09.064DOI Listing

Publication Analysis

Top Keywords

biomass residues
12
chemicals materials
8
lignocellulosic biomass
8
potential applications
8
extracted hemicellulose
8
bio-based products
4
products xylan
4
xylan review
4
review obtaining
4
chemicals
4

Similar Publications

Herein, choline chloride/oxalic acid (ChCl/OA) and choline chloride/oxalic acid/ethylene glycol (ChCl/OA/EG) pretreatments of oil palm empty fruit bunches (EFB) and mesocarp fibers (MSF) were conducted to achieve protection of the lignin structure, while improving the enzymatic efficiency of the solid residues. Under the operating conditions of 90 °C and 6 h, ChCl/OA/EG demonstrated a higher lignin extraction selectivity and obtained solid residues with higher hemicellulose content compared to ChCl/OA. The digestibility of glucan and xylan in solid residues obtained using ChCl/OA/EG achieved 98.

View Article and Find Full Text PDF

Use of alfalfa cellulose for formulation of strong, biodegradable film to extend the shelf life of strawberries.

Int J Biol Macromol

December 2024

Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA. Electronic address:

Plastic packaging has increased concerns about human health and the ecosystem due to non-biodegradability. Several biopolymers, such as cellulose, starch, and proteins, are being explored, and cellulosic residue from agricultural biomass is suitable to overcome this predicament. Herein, cellulosic residue fibers (ACR) extracted from alfalfa were used to prepare biodegradable films by solubilizing them in ZnCl solution and crosslinking the chains with calcium ions (Ca) and sorbitol.

View Article and Find Full Text PDF

Pore blocking mechanisms of centipede toxin SsTx-4 on the inwardly rectifying potassium channels.

Eur J Pharmacol

December 2024

The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life Sciences, Hunan Normal University, Changsha, China. Electronic address:

The peptide toxin SsTx-4 derived from venom of centipede Scolopendra subspinipes mutilans was characterized as a potent antagonist of the inwardly rectifying potassium (Kir) channel subtypes Kir1.1, Kir4.1, and Kir6.

View Article and Find Full Text PDF

A novel efficient liquefaction process for corn starch through ternary deep eutectic solvent: Products characterization and liquefaction mechanism.

Int J Biol Macromol

December 2024

College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China. Electronic address:

A novel approach for the solvothermal liquefaction of corn starch (CS) was investigated, using ternary deep eutectic solvent (TDES) as both an acidic catalyst and a source of liquefaction reagent. Synergistic effects from multi-component TDES were observed, leading to milder reaction conditions (110 °C, 35 min) and improved product selectivity (relative content of polyhydroxy compounds up to 97.83 %).

View Article and Find Full Text PDF

Lignin, an energy-rich and adaptable polymer comprising phenylpropanoid monomers utilized by plants for structural reinforcement, water conveyance, and defense mechanisms, ranks as the planet's second most prevalent biopolymer, after cellulose. Despite its prevalence, lignin is frequently underused in the process of converting biomass into fuels and chemicals. Instead, it is commonly incinerated for industrial heat due to its intricate composition and resistance to decomposition, presenting obstacles for targeted valorization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!