Similarity in bioassays means that the test preparation behaves as a dilution of the standard preparation with respect to their biological effect. Thus, similarity must be investigated to confirm this biological property. Historically, this was typically conducted with traditional hypothesis testing, but this has received substantial criticism. Failing to reject similarity does not imply that the 2 preparations are similar. Also, rejecting similarity when bioassay variability is small might simply demonstrate a nonrelevant deviation in similarity. To remedy these concerns, equivalence testing has been proposed as an alternative to traditional hypothesis testing, and it has found its way in the official guidelines. However, similarity has been discussed mainly in terms of the parameters in the dose-response curves of the standard and test preparations, but the consequences of nonsimilarity on the relative bioactivity have never been investigated. This article provides a general equivalence approach to evaluate similarity that is directly related to bioequivalence on the relative bioactivity of the standard and test preparations. Bioequivalence on the relative bioactivity can only be guaranteed for positive (only nonblanks) and finite dose intervals. The approach is demonstrated on 4 case studies in which we also show how to calculate a sample size and how to investigate the power of equivalence on similarity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pst.1832 | DOI Listing |
ACS Biomater Sci Eng
January 2025
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.
The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
The enzyme D-sorbitol dehydrogenase (SLDH) facilitates the conversion of D-sorbitol to L-sorbose. While current knowledge of this enzyme class predominantly centers on Gluconobacter oxydans, the catalytic properties of enzymes from alternative sources, particularly their substrate specificity and coenzyme dependency, remain ambiguous. In this investigation, we conducted BLASTp analysis and screened out a novel SLDH (Fpsldh) from Faunimonas pinastri A52C2.
View Article and Find Full Text PDFFront Vet Sci
January 2025
Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
, is a herbaceous plant of the Asteraceae family which is a traditional Chinese herbal medicine. It is often used for dehumidification, antiemetics, spleen strengthening and antipyretic effects. is rich in various bio-active substances and has many biological functions, for instance anti-inflammatory, antioxidant and antiviral effects.
View Article and Find Full Text PDFis the most common cause of life-threatening fungal infection in the developed world but remains a therapeutic challenge. Protein kinases have been rewarding drug targets across diverse indications but remain untapped for antifungal development. Previously, screening kinase inhibitors against revealed a 2,3-aryl-pyrazolopyridine, GW461484A (GW), which targets casein kinase 1 (CK1) family member Yck2.
View Article and Find Full Text PDFACS Omega
January 2025
Applied Chemistry and Environment Laboratory, Applied Bioorganic Chemistry Team, Faculty of Science, Ibn Zohr University, Agadir 80000, Morocco.
The goal of this study was to synthesize and evaluate new antimicrobial compounds. We specifically focused on the development of 2,5-disubstituted tetrazole derivatives containing the O-methyl-2,3-O-isopropylidene-(D)-ribofuranoside groups through N-alkylation reactions. The synthesized compounds were characterized using H and C nuclear magnetic resonance (NMR) spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!