Numerous studies have demonstrated the negative effects of elevated O on leaf photosynthesis. Within trees, a portion of respired CO is assimilated by woody tissue photosynthesis, but its response to elevated O remains unclear. Saplings of two evergreen tree species, EuCahetus dunnii Maiden (E. dunnii) and Osmanthus fragrans (Thunb.) Lour. (O. fragrans), were exposed to non-filtered air (NF), 100 nmol mol O air (E1) and 150 nmol mol O air (E2) in open-top chambers from May 5 to September 5, 2016 (8 h a day; 7 days a week) in subtropical China. In this study, O fumigation significantly reduced leaf net photosynthesis rate in both two tree species on most measurements. However, compared with leaf net photosynthesis rate, woody tissue gross photosynthesis rate showed less negative response to O fumigation and was even stimulated to increase. Refixation rate reflects the utilization efficiency of the respired CO by woody tissue photosynthesis. During the experiment period, E1 and E2 both increased refixation rate in O. fragrans compared with NF. Whereas for E. dunnii, E1 increased refixation rate until 81 days after starting of fumigation and then decreased it, and E2 decreased it all the time. Refixation rate had a significant positive correlation with woody tissue chlorophyll contents, indicating that the response of refixation rate to elevated O may relate to chlorophyll contents. All these suggested that under O fumigation, when atmospheric CO uptake and fixation by leaf is limited, woody tissue photosynthesis can contribute more to the total carbon assimilation in trees. The findings help to understand the significance of woody tissue photosynthesis under elevated O conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-017-0584-z | DOI Listing |
Plant Methods
January 2025
College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
Background: Virus-induced gene silencing (VIGS) is a rapid and powerful method for gene functional analysis in plants that pose challenges in stable transformation. Numerous VIGS systems based on Agrobacterium infiltration has been widely developed for tender tissues of various plant species, yet none is available for recalcitrant perennial woody plants with firmly lignified capsules, such as tea oil camellia. Therefore, there is an urgent need for an efficient, robust, and cost-effective VIGS system for recalcitrant tissues.
View Article and Find Full Text PDFPlant Dis
January 2025
Tennessee State University, Otis Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, Tennessee, United States, 37110;
Incense cedar [ (Torr.) Florin] is a coniferous evergreen tree, indigenous to western North America, that is being evaluated in Tennessee for its adaptability to eastern U.S.
View Article and Find Full Text PDFPlant Dis
December 2024
College of Landscape Architecture and Horticulture, Kunming, China;
Dodder (Cuscuta spp.), particularly the species Cuscuta chinensis, is a parasitic weed known for its ability to infest a broad spectrum of plant species, thereby significantly affecting the stability and functionality of native ecosystems (Zhang, Xu et al. 2021).
View Article and Find Full Text PDFFront Plant Sci
December 2024
Leibniz University Hannover, Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Hannover, Germany.
Introduction: The presence of wounds in addition to the excision-induced wounds after severance from the stock plants is known to positively influence adventitious root formation of woody plant cuttings. Previous morphological studies highlighted laser wounding as a technique allowing to precisely control the decisive ablation depth. However, the biochemical processes involved in the response of rooting to the additional wounding remained unexplored.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China.
The coordination between leaf and root traits is crucial for plants to synchronize their strategies for acquiring and utilizing above- and belowground resources. Nevertheless, the generality of a whole plant conservation gradient is still controversial. Such testing has been conducted mainly among communities at large spatial scales, and thus evidence is lacking within communities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!