This work aimed to assess inter-rater reliability and agreement of a magnetic resonance imaging (MRI)-based Kellgren and Lawrence (K&L) grading for patellofemoral joint osteoarthritis (OA) and to validate it against the MRI Osteoarthritis Knee Score (MOAKS). MRI scans from people aged 45 to 75 years with chronic knee pain participating in a randomised clinical trial evaluating dietary supplements were utilised. Fifty participants were randomly selected and scored using the MRI-based K&L grading using axial and sagittal MRI scans. Raters conducted inter-rater reliability, blinded to clinical information, radiology reports and other rater results. Intra- and inter-rater reliability and agreement were evaluated using the intra-class correlation coefficient (ICC) and Cohen's weighted kappa. There was a 2-week interval between the first and second readings for intra-rater reliability. Validity was assessed using the MOAKS and evaluated using Spearman's correlation coefficient. Intra-rater reliability of the K&L system was excellent: ICC 0.91 (95% CI 0.82-0.95); weighted kappa (ĸ = 0.69). Inter-rater reliability was high (ICC 0.88; 95% CI 0.79-0.93), while agreement between raters was moderate (ĸ = 0.49-0.57). Validity analysis demonstrated a strong correlation between the total MOAKS features score and the K&L grading system (ρ = 0.62-0.67) but weak correlations when compared with individual MOAKS features (ρ = 0.19-0.61). The high reliability and good agreement show consistency in grading the severity of patellofemoral OA with the MRI-based K&L score. Our validity results suggest that the scale may be useful, particularly in the clinical environment. Future research should validate this method against clinical findings.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10067-017-3888-yDOI Listing

Publication Analysis

Top Keywords

inter-rater reliability
16
k&l grading
12
patellofemoral joint
8
magnetic resonance
8
reliability
8
reliability validity
8
reliability agreement
8
mri scans
8
mri-based k&l
8
correlation coefficient
8

Similar Publications

Background And Objectives: Telemedicine has become a mainstay of ALS clinical care, but there is currently no standardized approach for assessing and tracking changes to the neurologic examination in this format. The goal of this study was to create a standardized telemedicine-based motor examination scale to objectively and reliably track ALS progression and use Rasch methodology to validate the scale and improve its psychometric properties.

Methods: A draft telemedicine examination scale with 25 items assessing movement in the bulbar muscles, neck, trunk, and extremities was created by an ALS expert panel, incorporating input from patient advisors.

View Article and Find Full Text PDF

Background: Telestroke assessments are widely used to remotely assess adults with suspected stroke, although they have not been studied in children. SPOT, the Study of Performing the PedNIHSS Over Televideo, tested the feasibility of assessing the Pediatric National Institutes of Health Stroke Scale (PedNIHSS) by televideo in children.

Methods: Children aged 2 to 17 years with and without strokes were recruited and examined in the outpatient neurology clinic.

View Article and Find Full Text PDF

Objective: To investigate the predictive value of tumor iodine concentration obtained with dual-energy CT (DECT) for treatment response in patients treated with immune checkpoint inhibitors (ICI).

Materials And Methods: Retrospective single-center study of consecutive metastatic melanoma and renal cell carcinoma (RCC) patients undergoing first-line ICI treatment. The iodine concentration measurement time points include prior to initiation of therapy (baseline [BL]), after initiation (follow-up [FU1]), and either time point nearest to 12 months or at time of progression (final follow-up [FFU]).

View Article and Find Full Text PDF

Purpose: To synthesize evidence regarding psychometric properties of the Mini-Balance Evaluation Systems Test (Mini-BESTest) in assessing postural control.

Method: Six databases were searched until October 15th, 2024. Two authors independently assessed the methodological quality and results of studies using the COSMIN checklist and Terweés criteria.

View Article and Find Full Text PDF

AI-Assisted Compressed Sensing Enables Faster Brain MRI for the Elderly: Image Quality and Diagnostic Equivalence with Conventional Imaging.

Int J Gen Med

January 2025

School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, People's Republic of China.

Purpose: Conventional brain MRI protocols are time-consuming, which can lead to patient discomfort and inefficiency in clinical settings. This study aims to assess the feasibility of using artificial intelligence-assisted compressed sensing (ACS) to reduce brain MRI scan time while maintaining image quality and diagnostic accuracy compared to a conventional imaging protocol.

Patients And Methods: Seventy patients from the department of neurology underwent brain MRI scans using both conventional and ACS protocols, including axial and sagittal T2-weighted fast spin-echo sequences and T2-fluid attenuated inversion recovery (FLAIR) sequence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!