Nanoparticle-based theranostic agents have emerged as a new paradigm in nanomedicine field for integration of multimodal imaging and therapeutic functions within a single platform. However, the clinical translation of these agents is severely limited by the complexity of fabrication, long-term toxicity of the materials, and unfavorable biodistributions. Here we report an extremely simple and robust approach to develop highly versatile and biocompatible theranostic poly(vinyl alcohol)-porphyrin nanoparticles (PPNs). Through a "one-pot" fabrication process, including the chelation of metal ions and encapsulation of hydrophobic drugs, monodispersenanoparticle could be formed by self-assembly of a very simple and biocompatible building block (poly(vinyl alcohol)-porphyrin conjugate). Using this approach, we could conveniently produce multifunctional PPNs that integrate optical imaging, positron emission tomography (PET), photodynamic therapy (PDT), photothermal therapy (PTT) and drug delivery functions in one formulation. PPNs exhibited unique architecture-dependent fluorescence self-quenching, as well as photodynamic- and photothermal- properties. Near-infrared fluorescence could be amplified upon PPN dissociation, providing feasibility of low-background fluorescence imaging. Doxorubicin (DOX)-loaded PPNs achieved 53 times longer half-life in blood circulation than free DOX. Upon irradiation by near infrared light at a single excitation wavelength, PPNs could be activated to release reactive oxygen species, heat and drugs simultaneously at the tumor sites in mice bearing tumor xenograft, resulting in complete eradication of tumors. Due to their organic compositions, PPNs showed no obvious cytotoxicity in mice via intravenous administration during therapeutic studies. This highly versatile and multifunctional PPN theranostic nanoplatform showed great potential for the integration of multimodal imaging and therapeutic functions towards personalized nanomedicine against cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5667413 | PMC |
http://dx.doi.org/10.7150/thno.20190 | DOI Listing |
Nat Commun
January 2025
The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China.
Optically pure 1,2-diols and 1,3-diols are the most privileged structural motifs, widely present in natural products, pharmaceuticals and chiral auxiliaries or ligands. However, their synthesis relies on the use of toxic or expensive metal catalysts or suffer from low regioselectivity. Catalytic asymmetric synthesis of optically pure 1,n-diols from bulk chemicals in a highly stereoselective and atom-economical manner remains a formidable challenge.
View Article and Find Full Text PDFEur J Dent
December 2024
Department of Dentistry, Oral Health Institute, Hamad Medical Corporation, Doha, Qatar, College of Dental Medicine, Qatar University, Doha, Qatar.
Advances in the field of nanomaterials are laying the foundation for the fabrication of nanosensors that are sensitive, selective, specific, cost-effective, biocompatible, and versatile. Being highly sensitive and selective, nanosensors are crucial in detecting small quantities of analytes and early diagnosis of diseases. These devices, operating on the nanoscale, detect signals, such as physical, chemical, optical, electrochemical, or biological, and then transduce them into a readable form.
View Article and Find Full Text PDFSmall Methods
January 2025
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China.
Flexible sensing offers real-time force monitoring, presenting a versatile and effective solution for dexterous manipulation, healthcare, environmental exploration, and perception of physical properties. Nonetheless, a limitation of many existing flexible force sensors stems from their isotropic structure or material properties, preventing them from simultaneously detecting both the direction and magnitude of the applied force. Herein, a high-performance 3D force sensor based on orthogonal multimodal sensing, the cancellation principle, and the strain effect is proposed.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Perovskite nanocrystals (PNCs) are promising active materials because of their outstanding optoelectronic properties, which are finely tunable via size and shape. However, previous synthetic methods such as hot-injection and ligand-assisted reprecipitation require a high synthesis temperature or provide limited access to homogeneous PNCs, leading to the present lack of commercial value and real-world applications of PNCs. Here, we report a room-temperature approach to synthesize PNCs within a liquid crystalline antisolvent, enabling access to PNCs with a precisely defined size and shape and with reduced surface defects.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
The uncontrolled dendrite growth and detrimental parasitic reactions of Zn anodes currently impede the large-scale implementation of aqueous zinc ion batteries. Here, we design a versatile quasi-solid-state polymer electrolyte with highly selective ion transport channels via molecular crosslinking of sodium polyacrylate, lithium magnesium silicate and cellulose nanofiber. The abundant negatively charged ionic channels modulate Zn desolvation process and facilitate ion transport.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!