The TGF-β family ligands myostatin, GDF11, and activins are negative regulators of skeletal muscle mass, which have been reported to primarily signal via the ActRIIB receptor on skeletal muscle and thereby induce muscle wasting described as cachexia. Use of a soluble ActRIIB-Fc "trap," to block myostatin pathway signaling in normal or cachectic mice leads to hypertrophy or prevention of muscle loss, perhaps suggesting that the ActRIIB receptor is primarily responsible for muscle growth regulation. Genetic evidence demonstrates however that both ActRIIB- and ActRIIA-deficient mice display a hypertrophic phenotype. Here, we describe the mode of action of bimagrumab (BYM338), as a human dual-specific anti-ActRIIA/ActRIIB antibody, at the molecular and cellular levels. As shown by X-ray analysis, bimagrumab binds to both ActRIIA and ActRIIB ligand binding domains in a competitive manner at the critical myostatin/activin binding site, hence preventing signal transduction through either ActRII. Myostatin and the activins are capable of binding to both ActRIIA and ActRIIB, with different affinities. However, blockade of either single receptor through the use of specific anti-ActRIIA or anti-ActRIIB antibodies achieves only a partial signaling blockade upon myostatin or activin A stimulation, and this leads to only a small increase in muscle mass. Complete neutralization and maximal anabolic response are achieved only by simultaneous blockade of both receptors. These findings demonstrate the importance of ActRIIA in addition to ActRIIB in mediating myostatin and activin signaling and highlight the need for blocking both receptors to achieve a strong functional benefit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5703284PMC
http://dx.doi.org/10.1073/pnas.1707925114DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
12
muscle mass
8
actriib receptor
8
actriia actriib
8
myostatin activin
8
muscle
7
myostatin
5
actriib
5
blockade
4
blockade activin
4

Similar Publications

The aim was to estimate the prevalence of low muscle mass (LMM) and low muscle mass associated with obesity (LMM-O) in healthy adult, and to verify the performance of raw bioelectrical impedance parameters (BIA) and vector analysis (BIVA) in the screening of this tow conditions. This is a cross-sectional study including 1025 healthy adults. Body composition was assessed by the BIA technique.

View Article and Find Full Text PDF

Clinical and imaging spectrum of non-congenital dominant ACTN2 myopathy.

J Neurol

January 2025

Department of Neurology and Neurosciences, Donostia University Hospital, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain.

Background: Alpha-actinin-2, a protein with high expression in cardiac and skeletal muscle, is located in the Z-disc and plays a key role in sarcomere stability. Mutations in ACTN2 have been associated with both hypertrophic and dilated cardiomyopathy and, more recently, with skeletal myopathy.

Methods: Genetic, clinical, and muscle imaging data were collected from 37 patients with an autosomal dominant ACTN2 myopathy belonging to 11 families from Spain and Belgium.

View Article and Find Full Text PDF

Cognitive changes and brain structural abnormalities in female carriers of DMD pathogenic variants.

J Neurol

January 2025

Department of Neurology, School of Medical Sciences, University of Campinas-UNICAMP, Universitaria "Zeferino Vaz", Rua Tessália Vieira de Camargo, 126. Cidade, Campinas, SP, 13083-887, Brazil.

Background: Skeletal and cardiac muscle damage have been increasingly recognized in female carriers of DMD pathogenic variants (DMDc). Little is known about cognitive impairment in these women or whether they have structural brain damage.

Objective: To characterize the cognitive profile in a Brazilian cohort of DMDc and determine whether they have structural brain abnormalities using multimodal MRI.

View Article and Find Full Text PDF

Purpose: The effect of skeletal muscle mass of the trunk and extremities on sagittal imbalance of the spine before and after surgery for adult spinal deformity (ASD) has not been elucidated. The purpose of this study was to examine the correlation between reduced skeletal muscle mass of the trunk and extremities, as well as spinopelvic parameters, preoperatively, postoperatively and at least 2 years after surgery for ASD.

Methods: This retrospective observational study included 140 consecutive patients who had undergone surgery for ASD and were followed-up for at least 2 years and whose skeletal muscle mass could be measured preoperatively using whole-body dual-energy X-ray absorptiometry.

View Article and Find Full Text PDF

Large-scale, pan-cancer analysis is enabled by data driven knowledge bases that link tumor molecular profiles with phenotypes. A debilitating cancer-related phenotype is skeletal muscle loss, or cachexia, which occurs partly from tumor products secreted into circulation. Using the LinkedOmicsKB knowledge base assembled from the Clinical Proteomics Tumor Analysis Consortium proteogenomic analysis, along with catalogs of human secretome proteins, ligand-receptor pairs and molecular signatures, we sought to identify candidate pan-cancer proteins secreted to blood that could regulate skeletal muscle phenotypes in multiple solid cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!