Coevolution between transposable elements and recombination.

Philos Trans R Soc Lond B Biol Sci

Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, Canada M5S3B2

Published: December 2017

One of the most striking patterns of genome structure is the tight, typically negative, association between transposable elements (TEs) and meiotic recombination rates. While this is a highly recurring feature of eukaryotic genomes, the mechanisms driving correlations between TEs and recombination remain poorly understood, and distinguishing cause versus effect is challenging. Here, we review the evidence for a relation between TEs and recombination, and discuss the underlying evolutionary forces. Evidence to date suggests that overall TE densities correlate negatively with recombination, but the strength of this correlation varies across element types, and the pattern can be reversed. Results suggest that heterogeneity in the strength of selection against ectopic recombination and gene disruption can drive TE accumulation in regions of low recombination, but there is also strong evidence that the regulation of TEs can influence local recombination rates. We hypothesize that TE insertion polymorphism may be important in driving within-species variation in recombination rates in surrounding genomic regions. Furthermore, the interaction between TEs and recombination may create positive feedback, whereby TE accumulation in non-recombining regions contributes to the spread of recombination suppression. Further investigation of the coevolution between recombination and TEs has important implications for our understanding of the evolution of recombination rates and genome structure.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698620PMC
http://dx.doi.org/10.1098/rstb.2016.0458DOI Listing

Publication Analysis

Top Keywords

recombination rates
16
recombination
14
tes recombination
12
transposable elements
8
tes
6
coevolution transposable
4
elements recombination
4
recombination striking
4
striking patterns
4
patterns genome
4

Similar Publications

Branching and molecular weight in levan: A detailed analysis of structural variability and enzymatic hydrolysis susceptibility.

Carbohydr Polym

March 2025

Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos, Mexico. Electronic address:

Levan, a β(2 → 6) linked D-fructofuranosyl polymer, is gaining significant attention in basic and applied research. It has been demonstrated that most properties are related to levan molecular weight but also its β(2 → 1) branching degree. In this paper the relationship between levan branching degree, particle size, and molecular weight is reviewed, exploring also how these structural parameters influence levan susceptibility to exo- and endolevanase hydrolysis for levans produced by three recombinants bacterial levansucrases.

View Article and Find Full Text PDF

Doping in pure materials causes vital alterations in opto-electrical and physicochemical characteristics, which enable the produced doped material to be highly efficient and effective. The current work focused on the synthesis of C/N-co-doped-ZnO nanorods a facile, eco-friendly, and solvent-free mechano-thermal approach. The synthesized C/N-co-doped ZnO nanorods were employed for the photocatalytic decay of methylene blue (MB) and brilliant cresyl blue (BCB) dyes, and their degradation capability was compared with that of pure ZnO nanoparticles prepared a precipitation approach.

View Article and Find Full Text PDF

Systematic Review of Vaccine Strategies Against Tritrichomonas foetus Infection in Cattle: Insights, Challenges, and Prospects.

Parasite Immunol

January 2025

The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, St Lucia, Queensland, Australia.

Tritrichomonas foetus is a protozoan parasite that causes bovine trichomonosis (also referred to as trichomoniasis) resulting in substantial economic loss in extensive grazing systems. The parasite colonises the reproductive tracts of both male and female cattle, being asymptomatic in males but causing early reproductive failure in infected females. This systematic review aimed to examine research manuscripts describing the development of T.

View Article and Find Full Text PDF

Multi-gene precision editing tool using CRISPR-Cas12a/Cpf1 system in Ogataea polymorpha.

Microb Cell Fact

January 2025

National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.

Background: Ogataea polymorpha, a non-conventional methylotrophic yeast, has demonstrated significant potential for heterologous protein expression and the production of high-value chemicals and biopharmaceuticals. However, the lack of precise and efficient genome editing tools severely hinders the construction of cell factories. Although the CARISP-Cas9 system has been established in Ogataea polymorpha, the gene editing efficiency, especially for multiple genes edition, needs to be further improved.

View Article and Find Full Text PDF

The evolution of genetic diversity and population structure of Plasmodium vivax as malaria elimination approaches remains unclear. This study analyzed the genetic variation and molecular epidemiology of P. vivax from Yala Province in southern Thailand, an area in the pre-elimination phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!