Poor shelf-life and sensitivity to environmental stress of entomopathogenic nematodes (EPNs) are traits, which deserve attention for improvement. Recently, a strong positive correlation between oxidative stress tolerance and longevity of Heterorhabditis bacteriophora dauer juveniles (DJs) has been reported. In this study, the improvement of H. bacteriophora DJ longevity was achieved by hybridization and mutagenesis. A hybrid pool deriving from two oxidative stress tolerant and long-living parental strains was generated. This hybrid AU1 × HU2 survived 2.6 days and 18 days longer than its best parent under oxidative stress and control conditions, respectively. In addition to the natural genetic variability, an EMS-mutant pool (M-OXI) with high longevity was generated and one of the derived mutagenized inbred lines (MOX-IL6) survived 5.8 days and 28.4 days longer than its donor line (IL3) under oxidative stress and control conditions, respectively. A genetic cross between the mutagenized inbred line and its donor line (MOX-IL × IL3) still survived 2.5 days and 18.5 days longer than the donor line under oxidative stress and control conditions, respectively. Concerning virulence and reproductive potential, trade-off effects were not observed as a result of hybridization and mutagenesis. These results underline the potential of classical genetic approaches for trait improvement in the nematode H. bacteriophora.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jip.2017.11.001DOI Listing

Publication Analysis

Top Keywords

oxidative stress
24
hybridization mutagenesis
12
stress control
12
control conditions
12
stress tolerance
8
tolerance longevity
8
heterorhabditis bacteriophora
8
mutagenized inbred
8
longer donor
8
stress
7

Similar Publications

MAPK-CncC Signaling Pathways Regulate the Antitoxic Response to Avermectin-Induced Oxidative Stress in Juvenile Chinese Mitten Crab, .

Environ Sci Technol

January 2025

Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000 Sichuan Province, China.

This study delves into the adverse effects of AVM, emphasizing oxidative stress induction in the Chinese mitten crab, , and the role of the MAPK-CncC signaling pathway in mediating the antioxidative response. Our findings reveal a dose-dependent impairment in growth performance, alongside occurrence of oxidative stress. The activity of CAT and superoxide dismutase increased significantly in all treatments (0.

View Article and Find Full Text PDF

Pseudoexfoliation glaucoma is a severe form of secondary open angle glaucoma and is associated with activation of the TGF-β pathway by TGF-β1. MicroRNAs (miRNAs) are small non-coding RNA species that are involved in regulation of mRNA expression and translation. To investigate what glaucomatous changes occur in the trabecular meshwork and how these changes may be regulated by miRNAs, we performed a bioinformatics analysis resulting in a miRNA-mRNA interactome.

View Article and Find Full Text PDF

Melatonin, renowned for regulating sleep-wake cycles, also exhibits notable anti-aging properties for the skin. Synthesized in the pineal gland and various tissues including the skin, melatonin's efficacy arises from its capacity to combat oxidative stress and shield the skin from ultraviolet (UV)-induced damage. Moreover, it curbs melanin production, thereby potentially ameliorating hyperpigmentation.

View Article and Find Full Text PDF

Growth hormone-releasing hormone signaling and manifestations within the cardiovascular system.

Rev Endocr Metab Disord

January 2025

Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA.

Growth hormone (GH)-releasing hormone (GHRH), a hypothalamic peptide initially characterized for its role in GH regulation, has gained increasing attention due to its GH-independent action on peripheral physiology, including that of the cardiovascular system. While its effects on the peripheral vasculature are still under investigation, GHRH and synthetic agonists have exhibited remarkable receptor-mediated cardioprotective properties in preclinical models. GHRH and its analogs enhance myocardial function by improving contractility, reducing oxidative stress, inflammation, and offsetting pathological remodeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!