Melanin-concentrating hormone (MCH) is a potent orexigenic and sleep-promoting neuropeptide in mammals produced predominately by hypothalamic neurons which project to a wide variety of brain areas. Several MCH producing neurons contain MCH as the only neuropeptide, while others comprise cocaine- and amphetamine regulated transcript (CART) as well. The intrahypothalamic localization and the projection pattern of these two subpopulations are distinct. To provide structural grounding to understand the mechanism of action of MCH neurons we show here the subcellular localization of the neuropeptides in the two subpopulations within the hypothalamus of healthy young male mice by applying single and double immunofluorescence labelling.; Thick, prominent MCH immunopositive reticulation and fine discrete granules are detected within the perikarya of both CART positive and CART-free MCH neurons. Typically, one or more immunoreactive processes emanate from the perikarya. The bulk of CART immunoreactivity is also centrally positioned, surrounded by sparse immunoreactive granules within the perikarya and in the processes. In double immunopositive neurons, the two neuropeptides seem to colocalize in the heavily labelled central area, while the immunopositive granules in the cell body periphery and in the processes apparently contain either MCH or CART. This spatial arrangement suggests that MCH and CART, after being synthetized and processed in the endoplasmic reticulum/Golgi complex, are sorted into separate dense core vesicles, which then enter into the cell processes. This mechanism allows for both concerted and independent regulation of the transport and release of MCH and CART.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.peptides.2017.11.002 | DOI Listing |
J Comp Neurol
February 2024
Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada.
Melanin-concentrating hormone (MCH) cells in the hypothalamus regulate fundamental physiological functions like energy balance, sleep, and reproduction. This diversity may be ascribed to the neurochemical heterogeneity among MCH cells. One prominent subpopulation of MCH cells coexpresses cocaine- and amphetamine-regulated transcript (CART), and as MCH and CART can have opposing actions, MCH/CART+ and MCH/CART- cells may differentially modulate behavioral outcomes.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2023
School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China.
Adiponectin (AdipoQ) is an adipokine involved in glucose homeostasis and lipid metabolism. In mammals, its role in appetite control is highly controversial. To shed light on the comparative aspects of AdipoQ in lower vertebrates, goldfish was used as a model to study feeding regulation by AdipoQ in fish species.
View Article and Find Full Text PDFFront Neuroanat
May 2022
Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.
Most of the studies on neurochemical mapping, connectivity, and physiology in the hypothalamic region were carried out in rats and under the columnar morphologic paradigm. According to the columnar model, the entire hypothalamic region lies ventrally within the diencephalon, which includes preoptic, anterior, tuberal, and mamillary anteroposterior regions, and sometimes identifying dorsal, intermediate, and ventral hypothalamic partitions. This model is weak in providing little or no experimentally corroborated causal explanation of such subdivisions.
View Article and Find Full Text PDFeNeuro
April 2022
Department of Physiology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
Hypothalamic melanin-concentrating hormone (MCH) neurons are important regulators of multiple physiological processes, such as sleep, feeding, and memory. Despite the increasing interest in their neuronal functions, the molecular mechanism underlying MCH neuron development remains poorly understood. We report that a three-dimensional culture of mouse embryonic stem cells (mESCs) can generate hypothalamic-like tissues containing MCH-positive neurons, which reproduce morphologic maturation, neuronal connectivity, and neuropeptide/neurotransmitter phenotype of native MCH neurons.
View Article and Find Full Text PDFCell
September 2021
Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. Electronic address:
Poor tumor infiltration, development of exhaustion, and antigen insufficiency are common mechanisms that limit chimeric antigen receptor (CAR)-T cell efficacy. Delivery of pattern recognition receptor agonists is one strategy to improve immune function; however, targeting these agonists to immune cells is challenging, and off-target signaling in cancer cells can be detrimental. Here, we engineer CAR-T cells to deliver RN7SL1, an endogenous RNA that activates RIG-I/MDA5 signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!