Influence of sample preparation on lipidomics analysis of polar lipids in adipose tissue.

Talanta

Department of Analytical Chemistry, University of Córdoba, Córdoba, Spain; CeiA3 Agroalimentary Excellence Campus, University of Córdoba, Córdoba, Spain; Maimónides Institute for Biomedical Research (IMIBIC)/University of Córdoba/Reina Sofía University Hospital,, Córdoba, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Spain. Electronic address:

Published: January 2018

The main limitations of lipidomics analysis are the chemical complexity of the lipids, the range of concentrations at which they exist, and the variety of samples usually analyzed. These limitations particularly affect the characterization of polar lipids owing to the interference of neutral lipids, essentially acylglycerides, which are at high concentration and suppress ionization of low concentrated lipids in mass spectrometry detection. The influence of sample preparation on lipidomics analysis of polar lipids in adipose tissue by LC-MS/MS was the aim of this research. Two common extractants used for lipids isolation, methanol:chloroform (MeOH:CHCl) and methyl tert-butyl ether (MTBE), were qualitatively and quantitatively compared for the extraction of the main families of lipids. The obtained results showed that each family of lipids is influenced differently by the extractant used. However, as a general trend, the use of MTBE as extractant led to higher extraction efficiency for unsaturated fatty acids, glycerophospholipids and ceramides, while MeOH:CHCl favored the isolation of saturated fatty acids and plasmalogens. The implementation of a solid-phase extraction (SPE) step for selective isolation of glycerophospholipids prior to LC-MS/MS analysis was assayed to evaluate its influence on lipids detection coverage as compared to direct analysis. This step was critical to enhance the detection coverage of glycerophospholipids by removal of ionization suppression effects caused by acylglycerides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2017.09.017DOI Listing

Publication Analysis

Top Keywords

lipidomics analysis
12
polar lipids
12
lipids
10
influence sample
8
sample preparation
8
preparation lipidomics
8
analysis polar
8
lipids adipose
8
adipose tissue
8
fatty acids
8

Similar Publications

Combined Analysis of the Leaf Metabolome, Lipidome, and Candidate Gene Function: Insights into Genotypic Variation in Phosphorus Utilization Efficiency in .

J Agric Food Chem

January 2025

School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China.

Stylo () exhibits excellent tolerance to low-phosphate (Pi) availability, but the underlying mechanisms responsible for improving the phosphorus (P) utilization efficiency (PUE) remain unclear. This study employed metabolomics, lipidomics, and gene expression analyses to investigate the differential responses to low-Pi stress between the high-PUE genotype CF047827 and the cultivar Reyan No. 2.

View Article and Find Full Text PDF

Ion mobility spectrometry and ion mobility-mass spectrometry in clinical chemistry.

Adv Clin Chem

January 2025

Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, United States. Electronic address:

Advancements in clinical chemistry have major implications in terms of public health, prompting many clinicians to seek out chemical information to aid in diagnoses and treatments. While mass spectrometry (MS) and hyphenated-MS techniques such as LC-MS or tandem MS/MS have long been the analytical methods of choice for many clinical applications, these methods routinely demonstrate difficulty in differentiating between isomeric forms in complex matrices. Consequently, ion mobility spectrometry (IM), which differentiates molecules on the basis of size, shape, and charge, has demonstrated unique advantages in the broad application of stand-alone IM and hyphenated IM instruments towards clinical challenges.

View Article and Find Full Text PDF

Double bond (C═C) position isomerism in unsaturated lipids can indicate abnormal lipid metabolism and pathological conditions. Novel chemical derivatization and mass spectrometry-based techniques are under continuing development to provide more accurate elucidation of lipid structure in finer structural detail. Here, we introduce a new ion chemistry for annotating lipid C═C positions, which is highly efficient for liquid chromatography-mass spectrometry-based lipidomics.

View Article and Find Full Text PDF

Background: Some studies suggest a potential association between plasma lipidome and erectile dysfunction (ED), but the underlying mechanism and whether circulating inflammatory proteins act as mediators remain unclear. The purpose of this study was to investigate the potential causal relationships between plasma lipidome, inflammatory proteins, and ED.

Methods: Plasma lipidome, circulating inflammatory proteins, and ED cases were identified based on the summary data from several large-scale genome-wide association studies (GWAS).

View Article and Find Full Text PDF

Single cell lipid biology.

Trends Cell Biol

January 2025

Institute of Bioengineering (IBI) and Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. Electronic address:

Lipids are major cell constituents endowed with astonishing structural diversity. The pathways responsible for the assembly and disposal of different lipid species are energetically demanding, and genes encoding lipid metabolic factors and lipid-related proteins comprise a sizable fraction of our coding genome. Despite the importance of lipids, the biological significance of lipid structural diversity remains largely obscure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!