1,25-Dihydroxycholecalciferol (calcitriol) modifies uptake and release of 25-hydroxycholecalciferol in skeletal muscle cells in culture.

J Steroid Biochem Mol Biol

School of Medical Sciences & Bosch Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia. Electronic address:

Published: March 2018

The major circulating metabolite of vitamin D, 25-hydroxycholecalciferol [25(OH)D], has a remarkably long half-life in blood for a (seco)steroid. Data from our studies and others are consistent with the hypothesis that there is a role for skeletal muscle in the maintenance of vitamin D status. Muscle cells internalise vitamin D-binding protein (DBP) from the circulation by means of a megalin/cubilin plasma membrane transport mechanism. The internalised DBP molecules then bind to actin and thus provide an intracellular array of high affinity binding sites for its specific ligand, 25(OH)D. There is evidence that the residence time for DBP in muscle cells is short and that it undergoes proteolytic degradation, releasing bound 25(OH)D. The processes of internalisation of DBP and its intracellular residence time, bound to actin, appear to be regulated. To explore whether 1,25-dihydroxycholecalciferol (calcitriol) has any effect on this process, cell cultures of myotubes and primary skeletal muscle fibers were incubated in a medium containing 10M calcitriol but with no added DBP. After 3h pre-incubation with calcitriol, the net uptake of 25(OH)D by these calcitriol-treated cells over a further 4h was significantly greater than that in vehicle-treated control cells. This was accompanied by a significant increase in intracellular DBP protein. However, after 16h of pre-incubation with calcitriol, the muscle cells showed a significantly depressed ability to accumulate 25(OH)D compared to control cells over a further 4 or 16hours. These effects of pre-incubation with calcitriol were abolished in fibers from VDR-knockout mice. The effect was also abolished by the addition of 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS), which inhibits chloride channel opening. Incubation of C2 myotubes with calcitriol also significantly reduced retention of previously accumulated 25(OH)D after 4 or 8h. It is concluded from these in vitro studies that calcitriol can modify the DBP-dependent uptake and release of 25(OH)D by skeletal muscle cells in a manner that suggests some inducible change in the function of these cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsbmb.2017.10.018DOI Listing

Publication Analysis

Top Keywords

muscle cells
20
skeletal muscle
16
pre-incubation calcitriol
12
cells
9
125-dihydroxycholecalciferol calcitriol
8
uptake release
8
residence time
8
control cells
8
muscle
7
calcitriol
7

Similar Publications

Replicating the structural and functional features of native myocardium, particularly its high-density cellular alignment and efficient electrical connectivity, is essential for engineering functional cardiac tissues. Here, novel electrohydrodynamically printed InterPore microfibrous lattices with anisotropic architectures are introduced to promote high-density cellular alignment and enhanced tissue interconnectivity. The interconnected pores in the microfibrous lattice enable dynamic, cell-mediated remodeling of fibrous hydrogels, resulting in continuous, mechanically stable tissue bundles.

View Article and Find Full Text PDF

Stem cell therapy for bladder regeneration: A comprehensive systematic review.

Regen Ther

March 2025

Pediatric Urology and Regenerative Medicine Research Center, Gene Cell and Tissue Research Institute Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran.

Tissue engineering has been considered a potential choice for urinary system reconstruction. Here, we aim to a broad spectrum of employed stem cells in bladder regeneration by performing a comprehensive systematic review. In January 2024, we searched Scopus, PubMed, and Embase databases for studies that tried bladder regeneration by tissue engineering using stem cells.

View Article and Find Full Text PDF

Treatment with an inhibitor of glucose use via glucose transporters (GLUT) has been shown to attenuate experimental abdominal aortic aneurysm (AAA) development in mice. Vascular smooth muscle cell (VSMC) signaling seems to be essential for angiotensin II (Ang II)-induced AAA in mice. Accordingly, we have tested a hypothesis that VSMC silencing of the major GLUT, GLUT1, prevents AAA development and rupture in mice treated with Ang II plus β-aminopropionitrile.

View Article and Find Full Text PDF

Human PBMC-based humanized mice exhibit myositis features and serve as a drug evaluation model.

Inflamm Regen

January 2025

Oncology & Immunology Unit, Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan.

Idiopathic inflammatory myopathies (IIMs) are a group of autoimmune disorders characterized by immune cell infiltration of muscle tissue accompanied by inflammation. Treatment of IIMs is challenging, with few effective therapeutic options due to the lack of appropriate models that successfully recapitulate the features of IIMs observed in humans. In the present study, we demonstrate that immunodeficient mice transplanted with human peripheral blood mononuclear cells (hPBMCs) exhibit the key pathologic features of myositis observed in humans and develop graft-versus-host disease.

View Article and Find Full Text PDF

Indirect bypass using autologous tissue is effective in Moyamoya disease, especially among pediatric patients. This study aimed to evaluate the effectiveness of indirect bypass using DuraGen (absorbable artificial dura mater composed of collagen matrix), as a substitute for autologous tissue in a rat model of chronic cerebral hypoperfusion. Male Wistar rats were subjected to bilateral internal carotid artery occlusion and divided into three groups: a control group without bypass surgery, a group wherein indirect bypass was performed using the temporalis muscle (encephalo-myo-synangiosis [EMS] group), and a group wherein DuraGen was used (Dura group).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!