Selective neuronal lapses precede human cognitive lapses following sleep deprivation.

Nat Med

Departments of Neurosurgery, Psychiatry, and Biobehavioral Sciences, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California, USA.

Published: December 2017

Sleep deprivation is a major source of morbidity with widespread health effects, including increased risk of hypertension, diabetes, obesity, heart attack, and stroke. Moreover, sleep deprivation brings about vehicle accidents and medical errors and is therefore an urgent topic of investigation. During sleep deprivation, homeostatic and circadian processes interact to build up sleep pressure, which results in slow behavioral performance (cognitive lapses) typically attributed to attentional thalamic and frontoparietal circuits, but the underlying mechanisms remain unclear. Recently, through study of electroencephalograms (EEGs) in humans and local field potentials (LFPs) in nonhuman primates and rodents it was found that, during sleep deprivation, regional 'sleep-like' slow and theta (slow/theta) waves co-occur with impaired behavioral performance during wakefulness. Here we used intracranial electrodes to record single-neuron activities and LFPs in human neurosurgical patients performing a face/nonface categorization psychomotor vigilance task (PVT) over multiple experimental sessions, including a session after full-night sleep deprivation. We find that, just before cognitive lapses, the selective spiking responses of individual neurons in the medial temporal lobe (MTL) are attenuated, delayed, and lengthened. These 'neuronal lapses' are evident on a trial-by-trial basis when comparing the slowest behavioral PVT reaction times to the fastest. Furthermore, during cognitive lapses, LFPs exhibit a relative local increase in slow/theta activity that is correlated with degraded single-neuron responses and with baseline theta activity. Our results show that cognitive lapses involve local state-dependent changes in neuronal activity already present in the MTL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5720899PMC
http://dx.doi.org/10.1038/nm.4433DOI Listing

Publication Analysis

Top Keywords

sleep deprivation
24
cognitive lapses
20
behavioral performance
8
sleep
7
lapses
6
deprivation
6
cognitive
5
selective neuronal
4
neuronal lapses
4
lapses precede
4

Similar Publications

The interaction between Alzheimer's disease (AD) and sleep deprivation has recently gained attention in the scientific literature, and recent advances suggest that AD epidemiology management should coincide with the management of sleeping disorders. This review focuses on the aspects of the mechanisms underlying the link between AD and insufficient sleep with progressing age. We also provide information which could serve as evidence for future treatments of AD from the early stages in connection with sleep disorder medication.

View Article and Find Full Text PDF

Background: Spatial working memory is crucial for processing visual and spatial information, serving as a foundation for complex cognitive tasks. However, the effects of prolonged sleep deprivation on its dynamics and underlying neural mechanisms remain unclear. This study aims to investigate the specific trends and neural mechanisms underlying spatial working memory alterations during 36 h of acute sleep deprivation.

View Article and Find Full Text PDF

Objectives: This study aimed to investigate the potential effects of different doses of essential oil (Lavender EO) administered by inhalation on sleep latency and neuromodulators regulating the sleep/wake cycle in rats with total sleep deprivation (TSD).

Materials And Methods: Forty-eight male Sprague-Dawley rats were divided into five groups: Control, Alprazolam (ALP, 0.25 mg/kg given intraperitoneally), L1 (Lavender EO, 0.

View Article and Find Full Text PDF

Background: Self-reported health problems following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are common and often include relatively non-specific complaints such as fatigue, exertional dyspnoea, concentration or memory disturbance and sleep problems. The long-term prognosis of such post-acute sequelae of COVID-19/post-COVID-19 syndrome (PCS) is unknown, and data finding and correlating organ dysfunction and pathology with self-reported symptoms in patients with non-recovery from PCS is scarce. We wanted to describe clinical characteristics and diagnostic findings among patients with PCS persisting for >1 year and assessed risk factors for PCS persistence versus improvement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!