Fluorophobic-driven assemblies of gold nanomaterials were stabilized into water-dispersible fluorous supraparticles by the film-forming protein hydrophobin II. The strategy makes use of fluorous nanomaterials of different dimensions to engineer size and inner functionalization of the resulting confined space. The inner fluorous compartments allow efficient encapsulation and transport of high loadings of partially fluorinated drug molecules in water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201710230 | DOI Listing |
ChemSusChem
January 2025
Korea Institute of Energy Technology, Energy Engineering, 21 KENTECH-gil, 58330, Naju-si, KOREA, REPUBLIC OF.
Cu2O has attracted significant attention as a potential photocatalyst for CO2 reduction. However, its practical use is limited by rapid charge recombination, insufficient catalytic sites, and poor stability. In this study, we report a facile synthesis of Cu2O@BiOCl core-shell hybrids with well-defined shape of Cu2O and two-dimensional nanosheet structure of BiOCl.
View Article and Find Full Text PDFAs an advanced nucleic acid therapeutical modality, mRNA can express any type of protein in principle and thus holds great potential to prevent and treat various diseases. Despite the success in COVID-19 mRNA vaccines, direct local delivery of mRNA into the lung by inhalation would greatly reinforce the treatment of pulmonary pathogens and diseases. Herein, we developed lipid nanoparticles (LNPs) from degradable ionizable glycerolipids for potent pulmonary mRNA delivery via nebulization.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China.
Lipid nanoparticles (LNPs) are widely used for nucleic acid delivery but face challenges like limited targeting and accelerated blood clearance (ABC) effect. We design three ionizable oligomers (IOs) that, with polylactide-polyethylene glycol (PLA-PEG), form a potential siRNA delivery system, named Ionizable Polymeric Micelles (IPMs). The siRNA encapsulated IPMs escape from lysosomes upon cellular uptake, and silence the target gene.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China. Electronic address:
This study investigated the effect of different-polarity aqueous ethanol solutions on the formation of V-type starch originating from corn starch. Scanning electron microscopy revealed that the morphology of starch transformed from a random lamellar structure to a granular structure with decreasing solution polarity. When the ethanol concentration increased from 40 % to 60 %, the crystallinity and single-helix ratio of V-type starch increased from 9.
View Article and Find Full Text PDFBiomaterials
December 2024
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China. Electronic address:
The development of novel microspheres for the combination of sonodynamic therapy (SDT) with transarterial embolization (TAE) therapy to amplify their efficacy has received increasing attention. Herein, a novel strategy for encapsulating sonosensitizers (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!