Glass Microsphere-Supported Giant Vesicles for the Observation of Self-Reproduction of Lipid Boundaries.

Angew Chem Int Ed Engl

Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 43 bvd du 11 Novembre 1918, 69622, Villeurbanne Cedex, France.

Published: January 2018

Growth and division experiments on phospholipid boundaries were carried out using glass microsphere-supported phospholipid (DOPC) giant vesicles (GVs) fed with a fatty acid solution (oleic acid) at two distinct feeding rates. Both fast and slow feeding methods produced daughter GVs. Under slow feeding conditions the membrane growth process (evagination, buds, filaments) was observed in detail by fluorescence microscopy. The density difference between supported mother vesicles and newly formed daughter vesicles allowed their easy separation. Mass spectrometric analysis of the resulting mother and daughter GVs showed that the composition of both vesicle types was a mixture of original supported phospholipids and added fatty acids reflecting the total composition of amphiphiles after the feeding process. Thus, self-reproduction of phospholipid vesicles can take place under preservation of the lipid composition but different aggregate size.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201710708DOI Listing

Publication Analysis

Top Keywords

glass microsphere-supported
8
giant vesicles
8
slow feeding
8
daughter gvs
8
vesicles
5
microsphere-supported giant
4
vesicles observation
4
observation self-reproduction
4
self-reproduction lipid
4
lipid boundaries
4

Similar Publications

Chemical Analysis of Lipid Boundaries after Consecutive Growth and Division of Supported Giant Vesicles.

iScience

November 2020

Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Bâtiment Edgar Lederer, 1 Rue Victor Grignard, 69622 Villeurbanne Cedex, France.

The reproduction of the shape of giant vesicles usually results in the increase of their "population" size. This may be achieved on giant vesicles by appropriately supplying "mother" vesicles with membranogenic amphiphiles. The next "generation" of "daughter" vesicles obtained from this "feeding" is inherently difficult to distinguish from the original mothers.

View Article and Find Full Text PDF

Glass Microsphere-Supported Giant Vesicles for the Observation of Self-Reproduction of Lipid Boundaries.

Angew Chem Int Ed Engl

January 2018

Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 43 bvd du 11 Novembre 1918, 69622, Villeurbanne Cedex, France.

Growth and division experiments on phospholipid boundaries were carried out using glass microsphere-supported phospholipid (DOPC) giant vesicles (GVs) fed with a fatty acid solution (oleic acid) at two distinct feeding rates. Both fast and slow feeding methods produced daughter GVs. Under slow feeding conditions the membrane growth process (evagination, buds, filaments) was observed in detail by fluorescence microscopy.

View Article and Find Full Text PDF

Glass microsphere supported protocells were built to investigate the transmission of catalytic function during replication. The chemical system's replication was driven through in situ amphiphile production that resulted in the formation of free bilayers, the system's second "generation". It was demonstrated that both generations, once separated, still exhibited the ability to convert amphiphile precursors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!