AI Article Synopsis

  • The focus on improving healthcare efficiency and reducing patient dropout rates presents opportunities to utilize existing clinical data for drug development and reverse translation.
  • The use of quantitative methods to transform clinical trial and real-world data into actionable insights is essential for driving innovation in this field.
  • This text reviews recent examples of reverse translation and explores future possibilities for gathering important clinical information to enhance decision-making in drug development.

Article Abstract

With so much emphasis on reducing attrition and becoming more efficient in the delivery of healthcare, there are many opportunities to leverage existing clinical data in drug development and to foster the practice of reverse translation. The application of quantitative approaches to convert clinical trial and real-world data to knowledge will continue to drive innovation. Herein we discuss recent examples of reverse translation and consider future opportunities to capture critical clinical knowledge to inform decision-making in drug development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5813105PMC
http://dx.doi.org/10.1002/cpt.897DOI Listing

Publication Analysis

Top Keywords

reverse translation
12
drug development
12
bedside bench
4
bench integrating
4
integrating quantitative
4
clinical
4
quantitative clinical
4
clinical pharmacology
4
pharmacology reverse
4
translation optimize
4

Similar Publications

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione protects against MPP-induced neurotoxicity by ameliorating oxidative stress, apoptosis and autophagy in SH-SY5Y cells.

Metab Brain Dis

January 2025

Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored.

View Article and Find Full Text PDF

Hyperalgesic priming is a model system that has been widely used to understand plasticity in painful stimulus-detecting sensory neurons, called nociceptors. A key feature of this model system is that following priming, stimuli that do not normally cause hyperalgesia now readily provoke this state. We hypothesized that hyperalgesic priming occurs because of reorganization of translation of mRNA in nociceptors.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common malignant primary brain tumor, with a mean survival of less than 2 years. Unique brain structures and the microenvironment, including blood-brain barriers, put great challenges on clinical drug development. Sophoricoside (Sop), an isoflavone glycoside isolated from seeds of Sophora japonica L.

View Article and Find Full Text PDF

Unlabelled: Early phase dose-finding (EPDF) trials are key in the development of novel therapies, with their findings directly informing subsequent clinical development phases and providing valuable insights for reverse translation. Comprehensive and transparent reporting of these studies is critical for their accurate and critical interpretation, which may improve and expedite therapeutic development. However, quality of reporting of design characteristics and results from EPDF trials is often variable and incomplete.

View Article and Find Full Text PDF

Specific modulation of 28S_Um2402 rRNA 2'--ribose methylation as a novel epitranscriptomic marker of ZEB1-induced epithelial-mesenchymal transition in different mammary cell contexts.

NAR Cancer

March 2025

Ribosome, Translation and Cancer Team, LaEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France.

The epithelial-mesenchymal transition (EMT) is a dynamic transdifferentiation of epithelial cells into mesenchymal cells. EMT programs exhibit great diversity, based primarily on the distinct impact of molecular activities of the EMT transcription factors. Using a panel of cancer cell lines and a series of 71 triple-negative primary breast tumors, we report that the EMT transcription factor ZEB1 modulates site-specific chemical modifications of ribosomal RNA (rRNA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!