Active Brownian equation of state: metastability and phase coexistence.

Soft Matter

Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, E08028 Barcelona, Spain.

Published: November 2017

As a result of the competition between self-propulsion and excluded volume interactions, purely repulsive self-propelled spherical particles undergo a motility-induced phase separation (MIPS). We carry out a systematic computational study, considering several interaction potentials, systems confined by hard walls or with periodic boundary conditions, and different initial conditions. This approach allows us to identify that, despite its non-equilibrium nature, the equations of state of Active Brownian Particles (ABP) across MIPS verify the characteristic properties of first-order liquid-gas phase transitions, meaning, equality of pressure of the coexisting phases once a nucleation barrier has been overcome and, in the opposite case, hysteresis around the transition as long as the system remains in the metastable region. Our results show that the equations of state of ABPs account for their phase behaviour, providing a firm basis to describe MIPS as an equilibrium-like phase transition.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7sm01504fDOI Listing

Publication Analysis

Top Keywords

active brownian
8
equations state
8
phase
5
brownian equation
4
equation state
4
state metastability
4
metastability phase
4
phase coexistence
4
coexistence result
4
result competition
4

Similar Publications

Reactive Brownian Dynamics of Chemically Fueled Droplets: Roles of Attraction and Deactivation Modes.

J Phys Chem B

January 2025

Applied Theoretical Physics - Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany.

The self-assembly of biological membraneless organelles can be mimicked by active droplets resulting from chemically fueled microphase separation. However, how the nonequilibrium, transient structure of these active droplets can be controlled through the physicochemical input parameters is not yet well understood. In our work, a chemically fueled two-state chemical reaction and subsequent droplet growth and decay are modeled with a reactive Brownian dynamics simulation in two spatial dimensions.

View Article and Find Full Text PDF

A hitchhiker's guide to active motion.

Eur Phys J E Soft Matter

January 2025

Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.

Intelligent decisions in response to external informative input can allow organisms to achieve their biological goals while spending very little of their own resources. In this paper, we develop and study a minimal model for a navigational task, performed by an otherwise completely motorless particle that possesses the ability of hitchhiking in a bath of active Brownian particles (ABPs). Hitchhiking refers to identifying and attaching to suitable surrounding bath particles.

View Article and Find Full Text PDF

The ability of particles to transform absorbed energy into translational movements brings peculiar order into nonequilibrium matter. Connected together into a chain, these particles collectively behave completely differently from well-known equilibrium polymers. Examples of such systems vary from nanoscale to macroscopic objects.

View Article and Find Full Text PDF

Dynamics of non-Markovian systems is a classic problem yet it attracts everlasting activity in physics and beyond. A powerful tool for modeling such setups is the generalized Langevin equation, however, its analysis typically poses a major challenge even for numerical means. For this reason, various approximations have been proposed over the years that simplify the original model.

View Article and Find Full Text PDF

Stochastic resetting has recently emerged as an efficient target-searching strategy in various physical and biological systems. The efficiency of this strategy depends on the type of environmental noise, whether it is thermal or telegraphic (active). While the impact of each noise type on a search process has been investigated separately, their combined effects have not been explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!