Directed Self-Assembly in "Breath Figure" Templating of Melamine-Based Amphiphilic Copolymers: Effect of Hydrophilic End-Chain on Honeycomb Film Formation and Wetting.

Chemistry

Institut des Sciences Analytiques et de Physico-Chimie pour, l'Environnement et les Matériaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA), CNRS UMR 5254, Hélioparc, 2 avenue Angot, 64053, Pau Cedex 9, France.

Published: January 2018

Amphiphilic copolymers are widely used in the fabrication of hierarchically honeycomb-structured films through a "breath figure" (BF) process because the hydrophilic block plays a key role in stabilising water templating. However, the hydrophilic monomers reported are mainly confined to acrylic acid and its derivatives, which largely limits understanding of the formation of BF arrays and the introduction of additional functions on porous films. The relationship between polymer composition, film microstructure and surface properties are also less documented. Herein, a novel melamine-based hydrophilic moiety, N-[3-({3-[(4,6-bis{[3-(dimethylamino)propyl]amino}-1,3,5-triazin-2yl)amino]propyl}(methyl)amino)propyl]methacrylamide (ANME), was incorporated into polystyrene (PS) chains by combining atom-transfer radical polymerisation and post-modification to afford three well-defined end-functionalised PS-PANME derivatives. These polymers were used to fabricate honeycomb films through the BF technique. Both inner and outer microstructures of the films were characterised by optical microscopy, AFM and SEM. Polymer hydrophilicity is enhanced upon increasing the PANME content, which results in variation of the film microstructure and porosity, and provokes a transition from Cassie-Baxter to Wenzel behaviour. Furthermore, the surface wettability of as-prepared honeycomb films and corresponding pillared films is mainly governed by film morphology, rather than by the properties of the polymers. Knowledge of the relationships between polymer composition and film structure, as well as surface wettability, is beneficial to design and prepare hierarchically porous films with desirable structures and properties.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201704369DOI Listing

Publication Analysis

Top Keywords

"breath figure"
8
amphiphilic copolymers
8
porous films
8
polymer composition
8
composition film
8
film microstructure
8
honeycomb films
8
surface wettability
8
films
7
film
5

Similar Publications

Developing efficient anti-microbials for thoroughly addressing contamination is essential for the improvement of food safety. Phage-built materials have shown great potential for biocontrol in environments. Due to challenges in delivery and stability, their widespread use has remained unattainable.

View Article and Find Full Text PDF

Crystallization-driven formation of cluster assemblies on surface for super-hydrophobic poly (L-lactic acid)/ZnO composite membrane.

Int J Biol Macromol

December 2024

Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China; Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China. Electronic address:

The poly(L-lactic acid) (PLLA)/ZnO composite membrane with cluster assemblies microstructure was constructed by a combination of non-solvent induced phase separation (NIPS) and the Breath-Figure method. In this novel method, the controllable diffusion rate between solvent and non-solvent was introduced to the system by adjusting the non-solvent solubility parameters. The humidity was adjusted to control non-solvent solubility parameters in the Breath-Figure method, which avoids the instantaneous phase separation induced by direct coagulation of water droplets.

View Article and Find Full Text PDF

Porous membranes with uniform pore sizes have shown potential applications. Although the breath figure method is renowned for its simplicity, it requires high humidity conditions, presenting challenges in energy consumption and safety, especially in arid climates. This study introduces an approach that uses inorganic salt-based aerosols to successfully fabricate honeycomb-patterned porous membranes at low humidity levels, where pure water vapor cannot produce such structures.

View Article and Find Full Text PDF

In this study, we simulate breath figures that are evolving two-dimensional assemblies of droplets on a substrate. We focus on the Voronoi/Shannon entropy of these figures, which quantifies the order related to the coordination number of droplets. We show that the Voronoi entropy of the complete breath figure pattern converges to a value that is the one of a randomly distributed point system.

View Article and Find Full Text PDF

Construction and functionalization of a 3D graphene architecture are crucial to harness and extend the unique features of graphene and thus essential for its numerous conventional and novel applications. Herein, a 3D honeycomb-patterned porous graphene architecture is constructed through a facile and low-cost self-assembly process and then integrated with CuO nanoparticles via a simple electrodeposition procedure. The 3D porous graphene structure is prepared by the breath figure method using a graphene oxide (GO)-based complex in which GO is modified by a surfactant as the casting material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!