We used density functional theory (DFT) and Car-Parrinello molecular dynamics (CPMD) simulation to investigate the adsorption and bond formation of hydronium ion (HO) onto a [Formula: see text] calcite surface. For surface coverage of 25% to 100%, the nature of HO interaction was explored through electron density and energetics in the context of bond critical points. The adsorbate-adsorbent structure was studied by simulation of pair correlation function. The results revealed that dissociation into water molecule(s) and proton(s) complements HO ion(s) adsorbtion. The HO molecule adsorbs onto the surface via its O atom, and interacts with surface calcium in a closed-shell mode; the H ion makes a covalent bond to the surface oxygen while maintaining H-bonding with water. Adsorption energies were diminished by 70-90 kJ mol when O-bonded H ions transferred to the O manually. While dissociative adsorption of HO ions is spontaneous at all surface coverages tested, the free energy was lowest at 75% coverage. Also, protonation of a completely pre-hydrated calcite surface leads to stronger interaction of water molecules with the surface. This unique outlook on hydrating calcite provides specific insights into biomineralization of this mineral, and helps depict further pH consequences in the field of biomaterial adsorption. Graphical abstract Dissociative adsorption of hydronium ion onto the surface of calcite.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-017-3499-1DOI Listing

Publication Analysis

Top Keywords

dissociative adsorption
12
surface
10
hydronium ion
8
calcite surface
8
water molecules
8
adsorption
6
calcite
5
bonding structural
4
structural thermodynamic
4
thermodynamic analysis
4

Similar Publications

Density functional theory calculation for understanding the roles of biochar in immobilizing exchangeable Al and enhancing soil quality in acidic soils.

Ecotoxicol Environ Saf

December 2024

Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu 610041, China. Electronic address:

Soil acidification poses a significant threat to agricultural productivity and ecological balance. While lime is a common remedy, it can have limitations, including nutrient deficiencies and potential soil compaction. Therefore, exploring alternative and sustainable amendments is crucial.

View Article and Find Full Text PDF

In this work, the sensing ability and the underlying reaction pathways of HS adsorption on two nanomaterial systems, pristine zinc oxide (ZnO) nanowires (NWs) and gold functionalized zinc oxide nanowires (Au@ZnO NWs), were explored in a side-by-side comparison of optical and electrical gas sensing. The properties of optical sensing were analyzed by photoluminescence intensity-over-time measurements (-) of as-grown ZnO NW samples, and the electrical gas-sensing properties were analyzed by current-over-time measurements (-) of ZnO NW chemically sensitive field-effect transistor (ChemFET) structures with a gas-sensitive open gate. The ZnO NWs were grown by high-temperature chemical vapor deposition (CVD) and thereafter surface-functionalized with a thin Au nanoparticle layer by magnetron sputtering.

View Article and Find Full Text PDF

Ru single atoms and nanoparticles immobilized on hierarchically porous carbon for robust dual-pH hydrogen evolution.

J Colloid Interface Sci

December 2024

School of Mechanical Engineering, Qinghai University, Xining 810016, PR China. Electronic address:

Ensuring Ruthenium-based (Ru) catalysts with high metal utilization is a potential and challenging strategy for designing and constructing high catalytic activity electrocatalysts for hydrogen evolution reaction (HER). Herein, Ruthenium single atoms (SA) and Ruthenium nanoparticles (NPs) are simultaneously anchored on hierarchically porous carbon via the self-templates method for the first time. Benefiting from the synergetic effect of hierarchically porous carbon and the coexistence of Ru SA and Ru NPs, the Ru/C-800 shows attractive HER catalytic activity in acidic and alkaline solutions, with low overpotentials to drive the current density of 10 mA cm and the smallest Tafel slope.

View Article and Find Full Text PDF

Herein, we first report a photocatalytic OCM using CO2 as a soft oxidant for C2H6 production under mild conditions, where an efficient photocatalyst with unique interface sites is constructed to facilitate CO2 adsorption and activation, while concurrently boosting CH4 dissociation. As a prototype, the Au quantum dots anchored on oxygen-deficient TiO2 nanosheets are fabricated, where the Au-Vo-Ti interface sites for CO2 adsorption and activation are collectively disclosed by in situ Kelvin probe force microscopy, quasi in situ X-ray photoelectron spectroscopy and theoretical calculations. Compared with single metal site, the Au-Vo-Ti interface sites exhibit the lower CO2 adsorption energy and decrease the energy barrier of the *CO2 hydrogenation step from 1.

View Article and Find Full Text PDF

Blue light will be a promising alternative for photodynamic therapy in psoriasis, but the photosensitizer in vivo remains unexplored. Mesoporous zinc phosphate microparticle (MZP) was synthesized successfully in this study, as evidenced by XPS, XRD, and nitrogen adsorption experiments. Its psoriatic skin-sensitive property was corroborated by SEM and the higher cumulative release rate of that impregnated with curcumin (Cur) and glycyrrhizic acid (GA), namely Cur-GA-MZP, at pH 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!