A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of an Addition-Fragmentation-Chain Transfer Monomer in Di(meth)acrylate Network Formation to Reduce Polymerization Shrinkage Stress. | LitMetric

AI Article Synopsis

  • - A new addition-fragmentation chain transfer (AFT) moiety was added to a dimethacrylate monomer, allowing it to copolymerize effectively with other methacrylates or acrylates during network formation.
  • - The AFT process helped reduce shrinkage stress during polymerization, particularly with acrylate monomers, while keeping the overall conversion rates relatively unchanged at low levels of the AFT moiety.
  • - At higher levels of the AFT moiety, polymerization kinetics and final conversion rates were negatively impacted, and studies showed that specific radical species influenced these changes and were linked to the amount of AFT present.

Article Abstract

A new addition-fragmentation chain transfer (AFT) capable moiety was incorporated into a dimethacrylate monomer that participated readily in network formation by copolymerizing with multifunctional methacrylates or acrylates. The process of AFT occurred simultaneously with photopolymerization of the AFT monomer (AFM) and other (meth)acrylate monomers leading to polymer stress relaxation via network reconfiguration. At low loading levels of the AFM, a significant reduction in shrinkage stress, especially for acrylate monomers, was observed with nominal effects on conversion. At higher loading levels of the AFM, the photopolymerization reaction kinetics and final double bond conversion were significantly lowered along with a delay in the gel-point conversion. Electron paramagnetic resonance studies during polymerization revealed the presence of a distinct radical species that was present in proportional quantities to the AFM content in the system. The lifetime and the character of the persistent radicals were altered due to the presence of the distinctive radical, in turn affecting the polymerization kinetics. With polymerization conducted at higher irradiance, the differential conversion between the control resin and samples with moderate AFM content was minimal, especially for the methacrylate-based formulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5665588PMC
http://dx.doi.org/10.1039/C7PY00702GDOI Listing

Publication Analysis

Top Keywords

network formation
8
shrinkage stress
8
loading levels
8
levels afm
8
afm content
8
afm
5
application addition-fragmentation-chain
4
addition-fragmentation-chain transfer
4
transfer monomer
4
monomer dimethacrylate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!